Механическая работа физическая величина. Формула работы. Что называют механической работой

ОПРЕДЕЛЕНИЕ

Механическая работа – это произведение силы, приложенной к объекту, на перемещение, совершённое этой силой.

– работа (может обозначаться как ), – сила, – перемещение.

Единица измерения работы — Дж (джоуль) .

Указанная формула применима к телу, движущемуся прямолинейно и постоянном значении воздействующей на него силы. Если между вектором силы и прямой, описывающей траекторию тела есть угол, то формула принимает вид:

Кроме того, понятие работы можно определить как изменение энергии тела:

Именно такое применение этого понятия чаще всего встречается в задачах.

Примеры решения задач по теме «Механическая работа»

ПРИМЕР 1

Задание Двигаясь по окружности радиусом 1м тело переместилось на противоположную точку окружности под действием силы 9Н. Найти работу, совершённую этой силой.
Решение Согласно формуле, работу нужно искать исходя не из пройденного пути, а из перемещения, то есть не нужно считать длину дуги окружности. Достаточно просто учесть, что при перемещении на противоположную точку окружности тело совершило перемещение, равное диаметру окружности, то есть 2м. По формуле:
Ответ Совершенная работа равна Дж.

ПРИМЕР 2

Задание Под действием некоторой силы тело движется вверх по наклонной плоскости под углом к горизонту. Найти силу, действующую на тело, если при продвижении тела на 5 м в вертикальной плоскости его энергия увеличилась на 19 Дж.
Решение По определению изменение энергии тела и есть работа, над ним совершённая.

Однако, мы не можем найти силу, подставив исходные данные в формулу, так как не знаем перемещение тела. Нам известно только его перемещение по оси (обозначим его ). Найдём перемещение тела с помощью определения функции :

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

«Физика - 10 класс»

Закон сохранения энергии - фундаментальный закон природы, позволяющий описывать большинство происходящих явлений.

Описание движения тел также возможно с помощью таких понятий динамики, как работа и энергия.

Вспомните, что такое работа и мощность в физике.

Совпадают ли эти понятия с бытовыми представлениями о них?

Все наши ежедневные действия сводятся к тому, что мы с помощью мышц либо приводим в движение окружающие тела и поддерживаем это движение, либо же останавливаем движущиеся тела.

Этими телами являются орудия труда (молоток, ручка, пила), в играх - мячи, шайбы, шахматные фигуры. На производстве и в сельском хозяйстве люди также приводят в движение орудия труда.

Применение машин во много раз увеличивает производительность труда благодаря использованию в них двигателей.

Назначение любого двигателя в том, чтобы приводить тела в движение и поддерживать это движение, несмотря на торможение как обычным трением, так и «рабочим» сопротивлением (резец должен не просто скользить по металлу, а, врезаясь в него, снимать стружку; плуг должен взрыхлять землю и т. д.). При этом на движущееся тело должна действовать со стороны двигателя сила.

Работа совершается в природе всегда, когда на какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Сила тяготения совершает работу при падении капель дождя или камня с обрыва. Одновременно совершает работу и сила сопротивления, действующая на падающие капли или на камень со стороны воздуха. Совершает работу и сила упругости, когда распрямляется согнутое ветром дерево.

Определение работы.


Второй закон Ньютона в импульсной форме Δ = Δt позволяет определить, как меняется скорость тела по модулю и направлению, если на него в течение времени Δt действует сила .

Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуются величиной, зависящей как от сил, так и от перемещений тел. Эту величину в механике и называют работой силы .

Изменение скорости по модулю возможно лишь в том случае, когда проекция силы F r на направление перемещения тела отлична от нуля. Именно эта проекция определяет действие силы, изменяющей скорость тела по модулю. Она совершает работу. Поэтому работу можно рассматривать как произведение проекции силы F r на модуль перемещения |Δ| (рис. 5.1):

А = F r |Δ| . (5.1)

Если угол между силой и перемещением обозначить через α, то F r = Fcosα .

Следовательно, работа равна:

А = |Δ|cosα . (5.2)

Наше бытовое представление о работе отличается от определения работы в физике. Вы держите тяжёлый чемодан, и вам кажется, что вы совершаете работу. Однако с точки зрения изики ваша работа равна нулю.

Работа постоянной силы равна произведению модулей силы и перемещения точки приложения силы и косинуса угла между ними.

В общем случае при движении твёрдого тела перемещения его разных точек различны, но при определении работы силы мы под Δ понимаем перемещение её точки приложения. При поступательном движении твёрдого тела перемещение всех его точек совпадает с перемещением точки приложения силы.

Работа, в отличие от силы и перемещения, является не векторной, а скалярной величиной. Она может быть положительной, отрицательной или равной нулю.

Знак работы определяется знаком косинуса угла между силой и перемещением. Если α < 90°, то А > 0, так как косинус острых углов положителен. При α > 90° работа отрицательна, так как косинус тупых углов отрицателен. При α = 90° (сила перпендикулярна перемещению) работа не совершается.

Если на тело действует несколько сил, то проекция равнодействующей силы на перемещение равна сумме проекций отдельных сил:

F r = F 1r + F 2r + ... .

Поэтому для работы равнодействующей силы получаем

А = F 1r |Δ| + F 2r |Δ| + ... = А 1 + А 2 + ... . (5.3)

Если на тело действует несколько сил, то полная работа (алгебраическая сумма работ всех сил) равна работе равнодействующей силы.

Совершённую силой работу можно представить графически. Поясним это, изобразив на рисунке зависимость проекции силы от координаты тела при его движении по прямой.

Пусть тело движется вдоль оси ОХ (рис. 5.2), тогда

Fcosα = F x , |Δ| = Δ х .

Для работы силы получаем

А = F|Δ|cosα = F x Δx .

Очевидно, что площадь прямоугольника, заштрихованного на рисунке (5.3, а), численно равна работе при перемещении тела из точки с координатой х1 в точку с координатой х2.

Формула (5.1) справедлива в том случае, когда проекция силы на перемещение постоянна. В случае криволинейной траектории, постоянной или переменной силы мы разделяем траекторию на малые отрезки, которые можно считать прямолинейными, а проекцию силы на малом перемещении Δ - постоянной.

Тогда, вычисляя работу на каждом перемещении Δ а затем суммируя эти работы, мы определяем работу силы на конечном перемещении (рис. 5.3, б).

Единица работы.


Единицу работы можно установить с помощью основной формулы (5.2). Если при перемещении тела на единицу длины на него действует сила, модуль которой равен единице, и направление силы совпадает с направлением перемещения её точки приложения (α = 0), то и работа будет равна единице. В Международной системе (СИ) единицей работы является джоуль (обозначается Дж):

1 Дж = 1 Н 1 м = 1 Н м .

Джоуль - это работа, совершаемая силой 1 Н на перемещении 1 если направления силы и перемещения совпадают.

Часто используют кратные единицы работы - килоджоуль и мега джоуль:

1 кДж = 1000 Дж ,
1 МДж = 1000000 Дж .



Работа может быть совершена как за большой промежуток времени, так и за очень малый. На практике, однако, далеко не безразлично, быстро или медленно может быть совершена работа. Временем, в течение которого совершается работа, определяют производительность любого двигателя. Очень большую работу может совершить и крошечный электромоторчик, но для этого понадобится много времени. Потому наряду с работой вводят величину, характеризующую быстроту, с которой она производится, - мощность.

Мощность - это отношение работы А к интервалу времени Δt, за который эта работа совершена, т. е. мощность - это скорость совершения работы:

Подставляя в формулу (5.4) вместо работы А её выражение (5.2), получаем

Таким образом, если сила и скорость тела постоянны, то мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов. Если же эти величины переменные, то по формуле (5.4) можно определить среднюю мощность подобно определению средней скорости движения тела.

Понятие мощности вводится для оценки работы за единицу времени, совершаемой каким-либо механизмом (насосом, подъёмным краном, мотором машины и т. д.). Поэтому в формулах (5.4) и (5.5) под всегда подразумевается сила тяги.

В СИ мощность выражается в ваттах (Вт) .

Мощность равна 1 Вт, если работа, равная 1 Дж, совершается за 1 с.

Наряду с ваттом используются более крупные (кратные) единицы мощности:

1 кВт (киловатт) = 1000 Вт ,
1 МВт (мегаватт) = 1 000 000 Вт .

Механическая работа - это физическая величина - скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел) .

Используемые обозначения

Работа обычно обозначается буквой A (от нем. A rbeit - работа, труд) или буквой W (от англ. w ork - работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы , работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s (F , s) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}} A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат , интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → (r →) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} - радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Работа в термодинамике

В термодинамике работа, совершённая газом при расширении , рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV ), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS , получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r (s) } {\displaystyle G=\{r=r(s)\}} , где s - переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} , и на неё действует сила , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F (s) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F (ξ i) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,...,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке и принимается за приближённое значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ является интегральной суммой Римана функции F (s) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана , можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | {\displaystyle |\tau |} разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle W=\lim _{|\tau |\rightarrow 0}\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F (s) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s (t) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s (t) ] s ′ (t) d t . {\displaystyle W=\int \limits _{a}^{b}Fs"(t)dt.}

Размерность и единицы

Единицей измерения работы в Международной системе единиц (СИ) является

Вверх