Принципы производства серной кислоты. В. Курилкин основы химической технологии и лесопереработки конспект. Химическая и принципиальная схемы производства

Главная > Конспект

Общие сведения

Серная кислота – один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

Технологические свойства серной кислоты

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: n SO 3 . m H 2 O. При n = m = 1 это моногидрат серной кислоты (100%-ная кислота), при m > n – водные растворы моногидрата, при m < n – растворы оксида серы (VI) в моногидрате (олеум):

H 2 SO 4 ·(n – 1) SO 3  H 2 SO 4  H 2 SO 4 (m – 1) H 2 O

олеум моногидрат водная кислота Моногидрат серной кислоты – бесцветная маслянистая жидкость с температурой кристаллизации 10,37 о С, температурой кипения 296,2 о С и плотностью 1, 85 г/cм 3 . С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава H 2 SO 4 . Н 2 O; H 2 SO 4 . 2 H 2 O; H 2 SO 4 . 4 H 2 O и соединения с оксидом серы (VI) состава H 2 SO 4 . SO 3 и H 2 SO 4 . 2SO 3 . Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации. Серная кислота смешивается с водой в любых отношениях, при этом выделяется большое количества тепла. По этой причине следует всегда разбавлять серную кислоту, наливая ее в воду, а не наоборот. Эта кислота гигроскопична , т. е. способна поглощать влагу из воздуха. Поэтому ее используют для осушения газов, не реагирующих с нею, пропуская их через серную кислоту.

Применение серной кислоты и олеума
Высокая активность серной кислоты в сочетании со сравнительно небольшой стоимостью производства предопределили громадные масштабы и чрезвычайное разнообразие ее применения. Трудно найти такую отрасль народного хозяйства, в которой не потреблялась бы в тех или иных количествах серная кислота или произведенные из нее продукты. Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза, составляя в настоящее время более 160 млн. т в год. Производство серной кислоты и олеума (в пересчете на моногидрат) в РФ составило: в 1998 г. 5,7 млн. т. Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60%), а также в производстве красителей (от 2 до 16%), химических волокон (от 5 до 15%) и металлургии (от 2 до 3%). При помощи серной кислоты производятся этиловый и другие спирты, некоторые эфиры, синтетические моющие средства, ряд ядохимикатов для борьбы с вредителями сельского хозяйства и сорными травами. Разбавленные растворы серной кислоты и ее соли применяют в производстве искусственного шелка, в текстильной промышленности для обработки волокна или тканей перед их крашением, а также в других отраслях легкой промышленности. В пищевой промышленности серная кислота применяется при получении крахмала, патоки и ряда других продуктов. Транспорт использует свинцовые сернокислотные аккумуляторы. Наконец, серную кислоту применяют в процессах нитрования и при производстве большей части взрывчатых веществ. На рис. 5. представлено применение серной кислоты и олеума в народном хозяйстве.

Методы получения серной кислоты В настоящее время серная кислота производится двумя способами: нитрозным, существующим более 200 лет, и контактным, освоенным в промышленности в конце XIX и начале XX в. Контактный способ вытесняет нитрозный (башенный). Первой стадией сернокислотного производства по любому методу является получение диоксида серы при сжигании сернистого сырья. После очистки диоксида серы (особенно в контактном методе) ее окисляют до триоксида серы, который соединяется с водой с получением серной кислоты. Окисление SO 2 в SO 3 в обычных условиях протекает крайне медленно. Для ускорения процесса применяют катализаторы. В контактном методе производства серной кислоты окисление диоксида серы в триоксид осуществляется на твердых контактных массах. Благодаря усовершенствованию контактного способа производства себестоимость более чистой и высококонцентрированной контактной серной кислоты лишь незначительно выше, чем башенной. Поэтому в РФ строятся лишь контактные цехи. В настоящее время свыше 90% всей кислоты производится контактным способом. В нитрозном способе катализатором служат оксиды азота, растворенные в серной кислоте. Такой раствор называется нитрозой – отсюда и название метода – нитрозный. Окисление SO 2 происходит в основном в жидкой фазе и осуществляется в башнях с насадкой. Поэтому нитрозный метод по аппаратурному признаку называют башенным . Сущность башенного метода заключается в том, что газ, полученный при сжигании сернистого сырья и содержащий примерно 9% SO 2 и 9 – 10% O 2 , очищается от частиц колчеданного огарка и поступает в башенную систему, которая состоит из нескольких (четырех – семи) башен с насадкой. Башни с насадкой работают по принципу вытеснения при политермическом режиме. Температура газа на входе в первую башню около 350 о С. В башнях протекает ряд абсорбционно-десорбционных процессов, осложненных химическими превращениями. В первых двух-трех башнях насадка орошается нитрозой, в которой растворенные оксиды азота химически связаны в виде нитрозилсерной кислоты NOHSO 4 . При высокой температуре нитрозилсерная кислота гидролизуется по уравнению:

2NOHSO 4 + H 2 O  2H 2 O + N 2 O 3 - Q

Двуокись серы абсорбируется водой и образует сернистую кислоту:

SO 2 + H 2 O  H 2 SO 3 + Q

Последняя реагирует с окислами азота в жидкой фазе:

H 2 SO 3 + N 2 O 3  H 2 SO 4 + 2NO + Q

Частично SO 2 может окисляться в газовой фазе:

SO 2 + N 2 O 3  SO 3 + 2NO + Q

SO 3 , абсорбируясь водой, также дает серную кислоту:

SO 3 + H 2 O  H 2 SO 4 + Q

Окись азота десорбируется в газовую фазу и окисляется до двуокиси азота кислородом воздуха:

2NO + O 2  2NO 2 + Q

Окислы азота NO + NO 2  N 2 O 3 поглощаются серной кислотой в последующих трех-четырех башнях по реакции, обратной уравнению (а). Для этого в башни подают охлажденную серную кислоту с малым содержанием нитрозы, вытекающую из первых башен. При абсорбции окислов получается нитрозилсерная кислота, участвующая в процессе. Таким образом, окислы азота совершают кругооборот и теоретически не должны расходоваться. На практике же из-за неполноты абсорбции имеются потери окислов азота. Расход окислов азота в пересчете на HNO 3 составляет 10-20 кг на тонну моногидрата H 2 SO 4 . Нитрозным способом получают загрязненную примесями и разбавленную 75-77%-ную серную кислоту, которая используется в основном для производства минеральных удобрений.

Сырье для производства серной кислоты

Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых могут быть получена сера или непосредственно оксид серы (IV). Природные залежи самородной серы невелики, хотя кларк ее равен 0,1%.Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов металлов, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов. Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV). При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает. В 1988 году она уже превышала 60% от общего количества серусодержащего сырья. В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты. 1. ЖЕЛЕЗНЫЙ КОЛЧЕДАН. Природный железный колчедан представляет сложную породу, состоящую из сульфида железа FeS 2 , сульфидов других металлов (меди, цинка, свинца, никеля, кобальта и др.), карбонатов металлов и пустой породы. На территории РФ существуют залежи колчедана, на Урале и Кавказе, где его добывают в рудниках в виде рядового колчедана.

Процесс подготовки рядового колчедана к производству ставит целью извлечение из него ценных цветных металлов и повышение концентрации дисульфида железа. Схема подготовки рядового колчедана представлена на рис. 6. 2. СЕРА. Элементарная сера может быть получена из серных руд или из газов, содержащих сероводород или оксид серы (IV). В соответствии с этим различают серу самородную и серу газовую (комовую). На территории РФ залежей самородной серы практически нет. Источниками газовой серы являются Астраханское газоконденсатное месторождение, Оренбургское и Самарское месторождения попутного газа. Из самородных руд серу выплавляют в печах, автоклавах или непосредственно в подземных залежах (метод Фраша). Для этого серу расплавляют непосредственно под землей, нагнетая в скважину перегретую воду, и выдавливают расплавленную серу на поверхность сжатым воздухом. 3. СЕРОВОДОРОД. Источником сероводорода служат различные горючие газы: коксовый, генераторный, попутный, газы нефтепереработки. Извлекаемый при их очистке сероводородный газ достаточно чист, содержит до 90% сероводорода и не нуждается в специальной подготовке. 4. ГАЗЫ ЦВЕТНОЙ МЕТАЛЛУРГИИ. В этих газах содержится от 4 до 10% оксида серы (IV) и они могут непосредственно использоваться для производства серной кислоты. Доля сырья в себестоимости продукции сернокислотного производства достаточно велика. Поэтому технико-экономические показатели этого производства существенно зависят от вида используемого сырья. Замена колчедана серой приводит к снижению капитальных затрат на строительство и улучшению экологической обстановки в результате ликвидации отвалов огарка и уменьшению выбросов токсичных веществ в атмосферу. Вследствие сложностей с транспортом серной кислоты сернокислотные заводы располагаются преимущественно в районах ее потребления. Поэтому производство серной кислоты развито во всех экономических районах РФ. Важнейшими центрами его являются: Щелково, Новомосковск, Воскресенск, Дзержинск, Березняки, Пермь.

Общая схема сернокислотного производства

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где: I - стадия получения печного газа (оксида серы (IV)) II - стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции. В общем случае схема производства серной кислоты может быть выражена в следующем виде:Сырье  подготовка сырья  сжигание (обжиг) сырья  очистка печного газа  контактирование  абсорбция контактированного газа  СЕРНАЯ КИСЛОТА. Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

Производство серной кислоты из флотационного колчедана
Химическая и принципиальная схемы производства
Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:- окисление дисульфида железа пиритного концентрата кислородом воздуха:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ,

Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

2SO 2 + O 2 = 2SO 3 ,

Абсорбция оксида серы (IV) с образованием серной кислоты:

SO 3 + H 2 O = H 2 SO 4

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

Принципиальная (структурная) схема этого производства представлена на рис. 7.

Окислительный обжиг колчедана

Обжиг колчедана в токе воздуха представляет необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа

2FeS 2 = 2FeS + S 2

и окисления продуктов диссоциации:

S 2 + 2O 2 = 2SO 2 ,

4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 ,

что описывается общим уравнением:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 + 3400 кДж.

Скорость процесса обжига зависит от температуры, дисперсности обжигаемого колчедана. Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащением воздуха кислородом и применением избытка воздуха при обжиге до 30% сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 o С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха. В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10000 кг м 2 /сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 мас. долей) и контроль температуры, облегчают процесс утилизации теплоты реакции обжига. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи других типов в производстве серной кислоты из колчедана. Продукты окислительного обжига колчедана - обжиговый (печной) газ и огарок, состоящий из оксида железа (III), пустой породы и невыноревшего остатка дисульфида железа. На практике, при обжиге колчедана печной газ содержит 13-14% оксида серы(IV), 2% кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) 7 – 9% и кислорода 11 – 9% .

Очистка обжигового (печного) газа

Обжиговый газ необходимо очистить от пыли, сернокислотного тумана и веществ, являющихся каталитическими ядами или представляющих ценность как побочные продукты. В обжиговом газе содержится до 300 г м 3 пыли, которая на стадии контактирования засоряет аппаратуру и снижает активность катализатора, а также туман серной кислоты. Кроме того, при обжиге колчедана одновременно с окислением дисульфида железа окисляются содержащиеся в колчедане сульфиды других металлов. При этом мышьяк и селен образуют газообразные оксиды As 2 O 3 и SeO 2 , которые переходят в обжиговый газ и становятся каталитическими ядами для ванадиевых контактных масс. Пыль и сернокислотный туман удаляют из обжигового газа в процессе общей чистки газа, которая включает операции механической (грубой) и электрической (тонкой) очистки. Механическую очистку газа осуществляют пропусканием газа через центробежные пылеуловители (циклоны) и волокнистые фильтры, снижающие содержание пыли в газе до 10 – 20 г/м 3 . Электрическая очистка газа в электрофильтрах снижает содержание пыли и тумана в газе до 0,05 – 0,1 г/м 3 . После общей очистки обжиговый газ, полученный из колчедана, обязательно подвергается специальной очистке для удаления остатков пыли и тумана и, главным образом, соединений мышьяка и селена, которые при этом утилизируют. В специальную очистку газа входят операции охлаждения его до температуры ниже температур плавления оксида мышьяка (315 0 С) и селена (340 0 С) в башнях, орошаемых последовательно 50% - ной и 20% - ной серной кислотой, удаления сернокислотного тумана в мокрых электрофильтрах и завершающей осушки газа в скрубберах, орошаемых 95%-ной серной кислотой. Из системы специальной очистки обжиговый газ выходит с температурой 140 – 50С. Оксид селена (IV), извлекаемый из обжигового газа, восстанавливается растворенным в серной кислоте оксидом серы (IV) до металлического селена:

SeO 2 + 2SO 2 + 2H 2 O = Se + 2H 2 SO 4 ,

который осаждается в отстойниках. Новым прогрессивным методом очистки обжигового газа является адсорбция содержащихся в нем примесей твердыми поглотителями, например, силикагелем или цеолитами. При подобной сухой очистке обжиговый газ не охлаждается и поступает на контактирование при температуре около 400С, вследствие чего не требует интенсивного дополнительного подогрева.

Контактирование оксида серы (IV )

Реакция окисления оксида серы (IV) до оксида серы (VI), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением:

SO 2 + 0,5 O 2  SO 3 - H.

Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 0 С и около 93 кДж при температуре контактирования. Система «SO 2 – O 2 – SO 3 » характеризуется состоянием равновесия в ней и скоростью процесса окисления оксида серы (IV), от которых зависти суммарный результат процесса. Степень превращения оксида серы (IV) в оксид серы (VI) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования. От скорости окисления оксида серы (IV) зависит количество оксида серы (IV), окисляющееся в единицу времени, и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достижимой в данных условиях. Энергия активации реакции окисления оксида серы(IV) кислородом в оксид серы (VI) весьма велика. Поэтому, в отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления. В производстве серной кислоты в качестве катализатора применяют контактные массы на основе оксида ванадия (V). Температура зажигания контактных ванадиевых масс составляет 380 – 420 0 С и зависит от состава контактируемого газа, повышаясь с уменьшением содержания в нем кислорода. Контактные массы должны находиться в таком состоянии, чтобы были обеспечены минимальное гидравлическое сопротивление потоку газа и возможность диффузии компонентов через слой катализатора. Для этого контактные массы для реакторов с неподвижным слоем катализатора формуются в виде гранул, таблеток или колец, средним диаметром около 5 мм, а для реакторов кипящего слоя в виде шариков диаметром около 1 мм. Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4-5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха, или с помощью встроенных в аппарат или вынесенных отдельно теплообменников. К преимуществам контактных аппаратов кипящего слоя относятся:- высокий коэффициент теплоотдачи от катализатора в состоянии кипящего слоя к поверхности теплообменника (в 10 раз больше, чем от газа), что позволяет без перегрева вести контактирование печного газа с высоким содержанием оксида серы (IV) и снизить температуру зажигания катализатора;- нечувствительность к пыли, вносимой вместе с печным газом.

Абсорбция оксида серы (VI )

Последней стадией в производстве серной кислоты контактным способом является абсорбция оксида серы (VI) из контактированного газа и превращение его в серную кислоту или олеум. Абсорбция оксида серы (VI) представляет обратимую экзотермическую реакцию и описывается уравнением:

n SO 3 + H 2 O  H 2 SO 4 + (n – 1) SO 3 - H.

Тепловой эффект реакции зависит от значения n и для n = 1 (образование моногидрата серной кислоты) равен 92 кДж. В зависимости от количественного соотношения оксида серы (VI) и воды может быть получен продукт различной концентрации:

    при n  1 олеум, при n = 1 моногидрат (100%-ная серная кислота), при n  1 водный раствор кислоты (разбавленная серная кислота).
Абсорбция оксида серы (VI) сопровождается выделением значительного количества тепла. Поэтому, для обеспечения полноты поглощения оксида серы (VI) процесс ведут при охлаждении газа и абсорбента до 80 0 С и используют аппараты с большим абсорбционным объемом, обеспечивающие интенсивный отвод тепла. С этой же целью процесс абсорбции проводят в две стадии, используя на первой в качестве сорбента 20%-ный олеум, а на второй – 98,3% - ную кислоту (техническое название «моногидрат»).Технологическая схема производства серной кислоты контактным методом В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДК – ДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки печного газа, технологически однотипных для всех схем, представлена на рис. 8.

Производительность установки до 1500 т/сут. по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт ч.

Товарные сорта серной кислоты

Современная промышленность выпускает несколько сортов серной кислоты и олеума, различающихся концентрацией и чистотой (табл. 2). Чтобы уменьшить возможность кристаллизации продуктов при перевозке и хранении, а также в самом производстве, установлены стандарты (ГОСТ 2184-77) на товарные сорта их, концентрации которых отвечают эвтектическим составам с наиболее низкими температурами кристаллизации.Публичный отчет

Самообследование кафедры «Экономики и менеджмента в нефтегазохимическом комплексе» по направлению 080500 – Менеджмент проводилось в соответствии с приказом ректора университета № 1-109 от 01.

  • Отчет о результатах самообследования 080502. 65 Экономика и управление на предприятии

    Публичный отчет

    Самообследование кафедры «Экономики и менеджмента в нефтегазохимическом комплексе» по специальности 080502.65 Экономика и управление на предприятии (по отраслям: химическая промышленность; нефтяная и газовая промышленность) проводилось

  • Федеральное агентство по образованию государственное образовательное учреждение высшего профессионального образования (31)

    Программа

    Современные проблемы философии и культурологии 8 Секция. Психология личности 8 НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ФАКУЛЬТЕТА 9 ИНФОРМАЦИОННЫХ СИСТЕМ В ЭКОНОМИКЕ И УПРАВЛЕНИИ 9 Секция.

  • Алгоритмы "распределенных согласований" для оценки вычислительной стойкости криптоалгоритмов / Л. К. Бабенко, А. М. Курилкина. М. Урсс, 2008. 108 с

    Документ

    Бабенко, Л.К. Алгоритмы "распределенных согласований" для оценки вычислительной стойкости криптоалгоритмов / Л. К. Бабенко, А. М. Курилкина. - М.

  • 4. Краткое описание промышленных способов получения серной кислоты

    Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

    где I - стадия получения печного газа (оксида серы (IV)),

    II - стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

    В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

    В общем случае производство серной кислоты может быть выражено в следующем виде:

    Сырье подготовка сырья сжигание (обжиг) сырья

    очистка печного газа контактирование абсорбция

    контактированного газа СЕРНАЯ КИСЛОТА

    Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

    В зависимости от того, как осуществляется процесс окисления SО 2 в SО 3 , различают два основных метода получения серной кислоты.

    В контактном методе получения серной кислоты процесс окисления SО 2 в SО 3 проводят на твердых катализаторах.

    Триоксид серы переводят в серную кислоту на последней стадии процесса - абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

    SО 3 + Н 2 О Н 2 SО 4

    При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

    Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

    SО 3 + N 2 О 3 + Н 2 О Н 2 SО 4 + 2NО

    В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

    1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    Окисление дисульфида железа пиритного концентрата кислородом воздуха:

    4FеS 2 + 11О 2 = 2Fе 2 S 3 + 8SО 2 ,

    Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

    2SО 2 + О 2 2SО 3

    Абсорбция оксида серы (VI) с образованием серной кислоты:

    SО 3 + Н 2 О Н 2 SО 4

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся:

    Особая конструкция печей для получения печного газа;

    Повышенное содержание оксида серы (IV) в печном газе;

    Отсутствие стадии предварительной очистки печного газа.

    Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора

    3) Существует также способ производства серной кислоты из сероводорода, получивший название "мокрого" катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

    Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии:

    1. Сжигание сероводорода:

    Н 2 S + 1,5О 2 = SО 2 + Н 2 О

    с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1: 1).

    2. Окисление оксида серы (IV) до оксида серы (VI):

    SО 2 + 0,5О 2 <=> SО 3

    с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1: 1).

    3. Конденсация паров и образование серной кислоты:

    SО 3 + Н 2 О <=> Н 2 SО 4

    таким образом, процесс мокрого катализа описывается суммарным уравнением:

    Н 2 S + 2О 2 = Н 2 SО 4

    Существует схема получения серной кислоты при повышенном давлении. Влияние давления на скорость процесса возможно оценить в кинетической области, где практически отсутствует влияние физических факторов. Повышение давления влияет как на скорость процесса, так и на состояние равновесия. Скорость реакции и выход продукта с повышением давления увеличиваются за счет повышения действующих концентраций SO 2 и О 2 и увеличения движущей силы процесса. Но при увеличении давления так же возрастают производственные затраты на сжатие инертного азота. Так же увеличивается температура в контактном аппарате, т.к. при высоком давлении и невысокой температуре значение константы равновесия мало, по сравнению со схемой под атмосферным давлением.

    Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления:

    1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств.

    2. Повышение единичной мощности установок. Увеличение мощности в два-три раза снижает себестоимость продукции на 25 - 30%.

    3. Интенсификация процесса обжига сырья путем использования кислорода или воздуха, обогащенного кислородом. Это уменьшает объем газа, проходящего через аппаратуру, и повышает ее производительность.

    4. Повышение давления в процессе, что способствует увеличению интенсивности работы основной аппаратуры.

    5. Применение новых катализаторов с повышенной активностью и низкой температурой зажигания.

    6. Повышение концентрации оксида серы (IV) в печном газе, подаваемом на контактирования.

    7. Внедрение реакторов кипящего слоя на стадиях обжига сырья и контактирования.

    8. Использование тепловых эффектов химических реакций на всех стадиях производства, в том числе, для выработки энергетического пара.

    Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО 2 в SО 3 . Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы - снизить выбросы в окружающую среду вредного компонента SО 2 .

    Для решения этой проблемы велось много различных исследований в различных областях: абсорбция SO 2 , адсорбция, исследования в изменении конструкции контактного аппарата.

    Существую различные конструкции контактных аппаратов:

    Контактный аппарат с одинарным контактированием: такой аппарат характеризуется невысокой степенью превращения диоксида серы в триоксид. Недостаток этого аппарата заключается в том, что газ, выходящий из контактного аппарата, имеет высокое содержание диоксида серы, что отрицательно сказывается с экологической точки зрения. Используя данный аппарат, отходящие газы необходимо очистить от SO 2 . Для утилизации SO 2 существует много различных способов: абсорбция, адсорбция,…. Это, конечно, снижает количество выбросов SO 2 в атмосферу, но это увеличивает, в свою очередь, количество аппаратов в технологическом процессе, высокое содержание SO 2 в газе после контактного аппарата показывает низкую степень использования SO 2 , поэтому данные аппараты в производстве серной кислоты не используюися.

    Контактный аппарат с двойным контактированием: ДК позволяет достичь того же минимального содержания SO 2 в выхлопных газах, что и после химической очистки. Метод основан на известном принципе Ле-Шателье, согласно которому удаление одного из компонентов реакционной смеси сдвигает равновесие в сторону образования этого компонента. Сущность метода заключается в проведении процесса окисления диоксида серы с выделением триоксида серы в дополнительном абсорбере. Метод ДК позволяет перерабатывать концентрированные газы.

    Контактный аппарат с промежуточным охлаждением. Сущность метода заключается в том, что газ, поступающий в контактный аппарат, пройдя через слой катализатора, попадает в теплообменник, там газ охлаждается, затем поступает на следующий слой катализатора. Этот метод так же увеличивает степень использования SO 2 и содержание его в выхлопных газах.

    Автоматизация отделения получения серной кислоты по методу мокрого катализа

    Процесс получения серной кислоты из сероводорода коксового газа по методу мокрого катализа осуществлен в отечественной и зарубежной промышленности на ряде установок различной производительности - от одной до ста тонн моногидрата в сутки...

    Исследование кинетики реакции алкилирования изобутана изобутиленом до изооктана методом математического моделирования

    Данный процесс осуществляется статическим способом. Он проходит в замкнутых закрытых реакторах при постоянном объеме. При проведении реакции в таких условиях теми параметрами, которые влияют на ход реакции, являются температура...

    Получение сернистого ангидрида в производстве серной кислоты

    Функциональная схема производства серной кислоты. Химическая схема включает в себя реакции: обжиг серного колчедана 4FeS2 + 11О2 = 2Fe2O3 + 8SO2 или серы S2 + 2O2 = 2SO2; окисление диоксида серы SO2 + 1/2O2 = SO3; абсорбция триоксида серы SO3 + Н2O = H2SO4...

    Производство полиэтилена методом низкого давления

    полимеризация этилен пожарный циклогексан Полиэтилен и полипропилен получают путем полимеризации соответственно этилена и пропилена методом низкого давления с использованием в качестве катализатора слабого раствора триэтилаллюминия в...

    Производство серной кислоты

    Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV). Природные залежи самородной серы невелики, хотя кларк ее равен 0...

    Производство серной кислоты

    Конденсация парой серной кислоты. В некоторых случаях, газ, используемый для получения серной кислоты, не содержит вредных примесей (мышьяка, фтора). Тогда экономически целесообразно не подвергать такой газ промывке в специальной аппаратуре...

    Производство серной кислоты

    В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава : При >>1 - это моногидрат серной кислоты (100%-ная кислота), при < - водные растворы моногидрата...

    Производство серной кислоты

    На рисунке 6 изображена технологическая схема получения серной кислоты контактным методом на колчедане. Рисунок 6 -Технологическая схема получения серной кислоты контактным методом на колчедане 19 1,2-промывные башни; 3...

    Производство серной кислоты

    Еще в XIII в. серную кислоту получали в незначительных количествах термическим разложением железного купороса FeSO4, поэтому и сейчас один из сортов серной кислоты называется купоросным маслом...

    Производство серной кислоты при повышенном давлении

    Сырьевая база производства серной кислоты - это серосодержащие соединения, из которых с помощью обжига можно получить диоксид серы. В промышленности около 80% серной кислоты получают из природной серы и железного колчедана...

    Разработка процесса производства изопропилбензола на ОАО "Омский каучук"

    Известны три основных способа получения изопропилбензола, имеющие промышленное значение: 1. Алкилирование бензола пропиленом в присутствия безводного хлористого алюминия (алкилирование по Фриделю - Крафтсу). 2...

    Разработка технологии получения серной кислоты обжигом серного колчедана

    Все промышленные методы синтеза серной кислоты основаны на следующих этапах: 1) первой стадией процесса является окисление сырья с получением обжигового газа, содержащего оксид серы SO2...

    Разработка технологии получения серной кислоты обжигом серного колчедана

    В промышленности применяют два метода получения серной кислоты, отличающихся способом окисления SO2: -нитрозный - с применением оксидов азота, получаемых из азотной кислоты, -контактный - с использованием твердых катализаторов (контактов)...

    Сернокислотное алкилиривание изобутана бутиленом

    Концентрация кислоты. Для С-алкилирования бутан-бутиленовых углеводородов обычно используют серную кислоту, содержащую от 88 до 98 % моногидрата...

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕПУБЛИКИ БЕЛАРУСЬ

    БЕЛОРУСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

    Кафедра технологии

    Индивидуальная работа на тему:

    «Производство серной кислоты контактным способом».

    Выполнил студент I курса ФБД: Клименок М. А.

    Проверил преподаватель: Тарасевич В. А.

    Минск 2002г.



    · Реферат

    · Описание контактного способа производства серной кислоты

    · Принципиальная технологическая схема производства серной кислоты контактным способом

    · Динамика трудозатрат при развитии технологического процесса

    · Расчёт уровня технологии, тех вооруженности и производительности живого труда

    · Заключение

    · Литература и источники



    Данная работа состоит из 12 страниц.

    Ключевые слова: Серная кислота, Контактный способ, Реакция, Технология производства, Динамика трудозатрат, Технологический процесс.

    В данной работе изучена и описана технология производства серной кислоты контактным способом. Приведены иллюстрации, схемы, графики, и таблицы, отражающие суть технологического процесса. Выделены важнейшие тенденции развития производства серной кислоты контактным способом

    Проведён анализ динамики трудозатрат живого и прошлого труда а также динамика трудозатрат при развитии технологического процесса. Рассчитан уровень технологии, тех вооруженности и производительности живого труда. Сделаны соответствующие выводы и заключения.

    Описание контактного способа производства серной кислоты

    Контактным способом производится большое количество сортов серной кислоты, в том числе олеум, содержащий 20% свободной SO3, купоросное масло (92,5% Н 2 SO 4 и 7,5% Н 2 О), аккумуляторная кислота, примерно такой же концентрации, как и купоросное масло, но более чистая.

    Контактный способ производства серной кислоты включает три стадии: очистку газа от вредных для катализатора примесей; контактное окисление сернистого ангидрида в серный; абсорбцию серного ангидрида серной кислотой. Главной стадией является контактное окисление SO 2 в SO 3 ; по названию этой операции именуется и весь способ.

    Контактное окисление сернистого ангидрида является типичным примером гетерогенного окислительного экзотермического катализа. Это один из наиболее изученных каталитических синтезов.

    Равновесие обратимой реакции
    2SO 2 + O 2 >< 2 SO 3 + 2 x 96,7 кдж (500 оС) (а)
    в соответствии с принципом Ле-Шателье сдвигается в сторону образования SO 3 при понижении температуры и повышении давления; соответственно увеличивается равновесная степень превращения SO 2 в SO 3

    Следует отметить, что повышение давления естественно увеличивает и скорость реакции (а). Однако повышенное давление в этом процессе применять нерационально, так как кроме реагирующих газов пришлось бы сжимать балластный азот, составляющий обычно 80 % от всей смеси и поэтому в производственном цикле активно используют катализаторы.

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Окись железа дешевая, но при обычном составе газа - 7% SO2 и 11% О2 она проявляет каталитическую активность только при температурах выше 625 оС, т.е. когда хр 70%, и поэтому применялась лишь для начального окисления SO2 до достижения хр 50-60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина; он оказался наиболее рациональным и только он применяется в производстве серной кислоты. Ванадиевая контактная масса содержит в среднем 7% V2O5; активаторами являются окислы щелочных металлов, обычно применяют активатор К2О; носителем служат пористые алюмосиликаты. В настоящий момент катализатор применятся в виде соединения SiO2, K и/или Cs, V в различных пропорциях. Такое соединение оказалось наиболее устойчивым к кислоте и наиболее стабильным. Во всем мире его более корректное названия «ванадий - содержащий». Такой катализатор разработан специально для работы с невысокими температурами, что приводит в меньшим выбросам в атмосферу. Кроме того - такой катализ дешевле нежели калий/ванадиевый. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца (Рис. 1).

    При условиях катализа окись калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность и поры которого смочены пленкой раствора пятиокиси ванадия в жидком пиросульфате калия.
    Ванадиевая контактная масса эксплуатируется при температурах от 400 до 600 оС. При увеличении температуры выше 600 оС начинается необратимое снижение активности катализатора вследствие спекания компонентов с образованием неактивных соединений, не растворимых в пиросульфате калия. При понижении температуры активность катализатора резко снижается вследствие превращения пятивалентного ванадия в четырехвалентный с образованием малоактивного ванадила VOSO4.

    Процесс катализа слагается из стадий: 1) диффузии реагирующих компонентов из ядер газового потока к гранулам, а затем в порах контактной массы; 2) сорбции кислорода катализатором (передача электронов от катализатора к атомам кислорода); 3) сорбции молекул SO2 с образованием комплекса SO2 * О * катализатор; 4) перегруппировки электронов с образованием комплекса SO2 * катализатор; 5) десорбции SO3 из пор контактной массы и от поверхности зерен.

    При крупных гранулах контактной массы суммарная скорость процесса определяется диффузией реагентов (1-я и 6-я стадии). Обычно стремятся получить гранулы не более 5 мм в поперечнике; при этом процесс идет на первых стадиях окисления в диффузионной, а на последних (при х 80%) в кинетической области.

    Вследствие разрушения и слеживания гранул, загрязнения слоя, отравления катализатора соединениями мышьяка и температурной порчи его при случайных нарушениях режима ванадиевая контактная масса заменяется в среднем через 4 года. Если же нарушена очистка газа, получаемая обжигом колчедана, то работа контактного аппарата нарушается вследствие отравления первого слоя контактной массы через несколько суток. Для сохранения активности катализатора применяется тонкая очистка газа мокрым способом.


    Принципиальная технологическая схема производства серной кислоты контактным способом

    Лучшим сырьем для производства сернистого газа служит сера, которая выплавляется из природных пород, содержащих серу, а также получается как побочный продукт при производстве меди, при очистке газов и т.п. Сера плавится при температуре 113 градусов С, легко воспламеняется и сгорает в простых по устройству печах (Рис. 2). Получается газ высокой концентрации, с маленьким содержанием вредных примесей.

    Сжигание серы происходит по реакции S + O 2 > SO 2 + 296 кДж Фактически сера перед горением плавится и испаряется (т. кип. ~444 о С) и сгорает в газовой фазе. Таким образом, сам процесс горения гомогенный.

    Компрессор и камера сгорания

    Недогоревшая сера
    Воздух для горения и догорания серы
    Жидкая сера
    Сжатый воздух
    Продукт – обжиговый газ

    технологическая схема производства серной кислоты

    1 - 1-я промывная башня; 2 - 2-я промывная башня с насадкой; 3 - мокрый электрофильтр; 4 - сушильная башня с насадкой; 5 - турбокомпресор; 6 - трубчатый теплообменник; 7 - контактный аппарат; 8 - трубчатый холодильник газа; 9 и 10 - абсорбционные башни с насадкой; 11 - центробежные насосы; 12 - сборники кислоты; 13 - холодильники кислоты

    Обжиговый газ после грубой очистки от пыли в огарковых электрофильтрах при температуре около 300 оС поступает в полую промывную башню (Рис. 3: 1,2), где разбрызгивается холодная серная кислота (75%-ная H 2 SO 4). При охлаждении газа имеющиеся в нем серный ангидрид и пары воды конденсируются в виде мельчайших капелек. В этих капельках растворяется окись мышьяка. Образуется мышьяковокислотный туман, который частично улавливается в первой башне и во второй башне с керамиковой насадкой. Одновременно улавливаются остатки пыли, селен и другие примеси. Образуется грязная серная кислота (до 8% от общей выработки), которую выдают как нестандартную продукцию. Окончательная очистка газа от трудноуловимого мышьяковокислотного тумана производится в мокрых фильтрах (Рис. 3: 3), которые устанавливают последовательно (два или три). Принцип действия мокрых фильтров таков же, как и сухих. Капельки туммана осаждаются на трубчатых осадительных электродах, изготовленных из свинца или пластмассы «АТМ», и стекают вниз. Очистка газа завершается осушкой его от паров воды купоросным маслом в башне с насадкой (Рис. 3: 4). Обычно устанавливаются две сушильные башни. Башни, газоходы и сборники кислоты в отделении очистки обычно устанавливают стальные, футерованные кислотоупорным кирпичом или диабазовой плиткой. Сухой сернистый газ и серный ангидрид не агрессивны, поэтому всю последующую аппаратуру вплоть до моногидратного абсорбера можно монтировать из обычной углеродистой стали без защиты от коррозии.

    Большое количество аппаратуры создает значительное сопротивление потоку газа (до 2 м вод.ст.), поэтому для транспортировки газа устанавливается турбокомпрессор (Рис. 3: 5). Компрессор, просасывая газ из печей через всю аппаратуру, нагнетает его в контактный узел.

    Контактный узел (Рис. 3: 6,7,8) состоит из контактного аппарата, кожухотрубного теплообменника и не показанного на схеме (Рис. 4). огневого пускового подогревателя газа. В теплообменнике пускового подогревателя газ нагревается перед поступлением в аппарат при пуске или при падении температуры в аппарате ниже нормы.
    Обычно применяются полочные контактные аппараты. Такой аппарат имеет цилиндрический корпус диаметром от 3 до 10 и высотой 10-20 м. Внутри корпуса установлены четыре-пять решеток со слоем гранул контактной массы на каждой из них. Между слоями контактной массы установлены промежуточные трубчатые или коробчатые теплообменники. На схеме представлен четырехслойный контактный аппарат, хотя чаще применяются пятислойные аппараты, но принцип их дествия полностью аналогичен, разница лишь в еще одном слое ктализатора. Свежий газ подогревается за счет тепла прореагировавшего горячего газа сначала во внешнем теплообменнике, потом он частично или полностью проходит для подогрева последовательно три-четыре внутренних теплообменника, при 440-450 о С поступает в первый слой контактной массы. Эта температура регулируется открыванием задвижек. Главное назначение внутренних теплообменников - охлаждение частично окисленного и разогретого в слое катализатора газа, таким образом, чтобы режим ступенчато приближался к кривой оптимальных температур.

    Полочные контактные аппараты - один из наиболее распространненых типов контактных аппаратов. Принцип их действия состоит в том, что подогрев и охлаждение газа между слоями катализатора, лежащими на полках, производится в самом контактном аппарате с использованием различных теплоносителей или способов охлаждения.В аппаратах такого типа высота каждого нижележащего слоя катализатора выше, чем расположенного над ним, т.е. увеличивается по ходу газа, а высота теплообменников уменьшается, так как по мере возрастания общей степени превращения скорость реакции снижается и соответственно уменьшается количество выделившегося тепла. В межтрубном пространстве теплообменников последовательно снизу вверх проходит свежий газ, охлаждая продукты реакции и нагреваясь до тепмпературы начала реакции

    Производительность контактных аппаратов в пересчете на H 2 SO 4 в зависимости от их размеров составляет от 50 до 500 т в сутки H 2 SO 4 . Разработаны конструкции контактных аппаратов мощностью 1000 и 2000 т в сутки. В аппарат загружают 200-300 л контактной массы на 1 т суточной выработки. Трубчатые контактные аппараты применяются для окисления SO 2 реже, чем полочные. Для окисления сернистого газа повышенной концентрации рационально применять контактные аппараты с кипящими слоями катализатора.

    Абсорбцию серного ангидрида по реакции SO 3 +H 2 O = H 2 SO 4 +9200 Дж обычно проводят в башнях с насадкой (Рис. 3: 9,10), так как барботажные или пенные абсорберы при большой интенсивности работы обладают повышенным гидравлическим сопротивлением. Если парциальное давление водяных паров над поглощающей кислотой значительно, то SO 3 соединяется с H 2 O в газовой фазе и образует мельчайшие капельки трудноуловимого сернокислотного тумана. Поэтому абсорбцию ведут концентрированными кислотами. Наилучшей по абсорбционной способности является кислота, содержащая 98,3% Н 2 SO 4 и обладающая ничтожно малой упругостью как водяного пара, так и SO 3 . Однако за один цикл в башне невозможно закрепление кислоты с 98,3% до стандартного олеума, содержащего 18,5-20% свободного серного ангидрида. Ввиду большого теплового эффекта абсорбции при адиабатическом процессе в башне кислота разогревается и абсорбция прекращается. Поэтому для получения олеума абсорбцию ведут в двух последовательно установленных башнях с насадкой: первая из них орошается олеумом, а вторая - 98,3%-ной серной кислотой. Для улучшения абсорбции охлаждают как газ, так и кислоту, поступающую в абсорбер, при этом увеличивается движущая сила процесса.

    Во всех башнях контактного производства, включая и абсорберы, количество орошающей кислоты во много раз больше, чем нужно для поглощения компонентов газа (Н 2 О, SO 3) и определяется тепловым балансом. Для охлаждения циркулирующих кислот устанавливаются обычно оросительные холодильники, в трубах которых, орошаемых снаружи холодной водой, протекает охлаждаемая кислота.

    Производство серной кислоты значительно упрощается при переработке газа, получаемого сжиганием предварительно расплавленной и профильтрованной природной серы, почти не содержащей мышьяка. В этом случае чистую серу сжигают в воздухе, который предварительно высушен серной кислотой в башне с насадкой. Получается газ 9% SO2 и 12% О2 при температуре 1000 оС, который сначала направляется под паровой котел, а затем без очистки в контактный аппарат. Интенсивность работы аппарата больше, чем на колчеданном газе, вследствие повышенной концентрации SO2 и О2. В аппарате нет теплообменников, так как температура газов снижается добавкой холодного воздуха между слоями. Абсорбция SO3 производится так же, как и в технологической схеме.

    Важнейшие тенденции развития производства серной кислоты контактным способом:

    1) интенсификация процессов проведением их во взвешенном слое, применением кислорода, производством и переработкой концентрированного газа, применением активных катализаторов;

    2) упрощение способов очистки газа от пыли и контактных ядов (более короткая технологическая схема);

    3) увеличение мощности аппаратуры;

    4) комплексная автоматизация производства;

    5) снижение расходных коэффициентов по сырью и использование в качестве сырья серосодержащих отходов различных производств;

    6) обезвреживание отходящих газов.

    Динамика трудозатрат при развитии технологического процесса

    В общем виде весь вышеизложенный материал можно изобразить следующим образом:

    Известно что данный технологический процесс и динамику трудозатрат харрактеризуют следующие формулы:

    Тж = ---------------------- Тп = 0,004 * t 2 +0,3 Тс = Тж + Тп

    Взаимосвязь между этими формулами выглядит так:


    Тп = 0,004 * - 75 +0,3 и Тж = 21 * Тп-0,3 +1575

    Основываясь на вышеизложенных формулах проведём расчёты и сведём их в общую таблицу (Таб. 1):

    (Таб. 1): Динамика трудозатрат на производстве серной кислоты на 15 лет

    t (Время, года) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Затраты живого труда 0,78 0,75 0,71 0,654 0,595 0,54 0,48 0,43 0,38 0,34 0,3 0,27 0,24 0,22 0,198
    Затраты прошлого труда 0,3 0,32 0,34 0,364 0,4 0,44 0,496 0,56 0,62 0,7 0,78 0,88 0,98 1,08 1,2
    Совокупные затраты 1,09 1,07 1,04 1,018 0,995 0,98 0,976 0,98 1,01 1,04 1,09 1,15 1,22 1,3 1,398

    На основании таблицы построим графики зависимостей Тж, Тп, Тс от времени (Рис. 7) и зависимости Тж от Тп (Рис. 6) и Тп от Тж (Рис. 8).

    Из данного графика видно, что данный технологический процесс является ограниченным в своём развитии.

    Экономический предел накопления прошлого труда наступит через семь лет.

    Из графиков 7 и 8 видно что вид технологического процесса является трудосберегающим.

    Расчёт уровня технологии, тех вооруженности и производительности живого труда.

    Уровень технологии рассчитывается по формуле:

    Утех = 1/Тж * 1/ ТП

    Производительность живого труда:


    L = У тех * В

    Техническая вооружённость рассчитывается:

    В = Тп / Тж

    Относительный уровень технологии:

    Уотнос = Утех/ L

    Проведём расчёты используя приведёные выше формулы и данные занесём в таблицу (Таб. 2):

    T Время (года) 1 2 3 4 5 6 7 8 9 10 11 12 13
    Затраты живого труда 0,78 0,75 0,71 0,654 0,595 0,54 0,48 0,43 0,38 0,34 0,3 0,27 0,24
    Затраты прошлого труда 0,3 0,32 0,34 0,364 0,4 0,44 0,496 0,56 0,62 0,7 0,78 0,88 0,98
    Совокупные затраты 1,09 1,07 1,04 1,018 0,995 0,98 0,976 0,98 1,01 1,04 1,09 1,15 1,22
    Уровень технологии 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2
    Тех. вооруженность 0,39 0,42 0,47 0,556 0,672 0,83 1,033 1,3 1,64 2,058 2,58 3,22 4
    Производительность Тж 1,28 1,33 1,41 1,529 1,68 1,86 2,083 2,34 2,62 2,94 3,29 3,68 4,1
    Относ уровень технологии 3,29 3,16 2,98 2,747 2,5 2,25 2,016 1,8 1,6 1,429 1,28 1,14 1,02

    Из данной таблицы видно что рационалистическое развитие целесообразно только в течении семи лет поскольку в этот период времени относительный уровень технологии больше производительности живого труда.


    Заключение

    В данной работе изучена и описана технология производства серной кислоты контактным способом, проведён анализ динамики трудозатрат живого и прошлого труда а также динамика трудозатрат при развитии технологического процесса. На основании проделанной работы получены следующие выводы: Развитие тех процесса ограничено, экономический предел накопления прошлого труда равен семи годам, данный технологический процесс является трудосберегающим и рационалистическое развитие целесообразно в течении семи лет.


    Литература и источники:


    1. ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ /Бараненко Д. http://service.sch239.spb.ru:8101/infoteka/root/chemistry/room1/baran/chem.htm

    2. Технология важнейших отраслей промышленности: Учеб. Для эк. Спец. Вузов / А.М. Гинберг, Б.А. Хохлов. – М.: Высшая школа, 1985.





    Стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты. 1. Железный колчедан. Природный железный колчедан представляет сложную породу, состоящую из сульфида железа РеБ2, сульфидов других металлов (меди, цинка, свинца и др.), ...


    Еще не всегда осуществима. В то же время отходящие газы – наиболее дешевое сырье, низки оптовые цены и на колчедан, наиболее же дорогостоящим сырьем является сера. Следовательно, для того чтобы производство серной кислоты из серы было экономически целесообразно, должна быть разработана схема, в которой стоимость ее переработки будет существенно ниже стоимости переработки колчедана или отходящих...

    Для автоматического регулирования необходимо максимально знать требования, предъявляемые различным химико-технологическим процессом. 1.Основная часть 1.1 Технологический процесс получение серного ангидрида при получении серной кислоты. Производство серной кислоты контактным способом состоит из следующих действий: 1. Разгрузка, складирование и подготовка сырья...

    Образуется азотная кислота: NO(HSO4) + H2O®H2SO4 + HNO2 Она - то и окисляет SO2 по уравнению: SO2 + 2HNO2®H2SO4 + 2NO В нижней части башен 1 и 2 накапливается 75% - ная серная кислота, естественно, в большем количестве, чем её было затрачено на приготовление нитрозы (ведь добавляется «новорождённая» серная кислота). Окись азота NO возвращается снова на окисление. Поскольку некоторое количество...

    Производство серной кислоты из серы

    Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей :

    особая конструкция печей для получения печного газа;

    повышенное содержание оксида серы (IV) в печном газе;

    отсутствие стадии предварительной очистки печного газа. Производство серной кислоты из серы по методу двойного контактирования и двойной абсорбции (рис. 4) состоит из нескольких стадий:

    Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной серной кислотой до содержания влаги 0,01% по объему; Осушенный воздух поступает в серную печь после предварительного подогрева в одном из теплообменников контактного узла.

    Сжигание (горение) серы представляет собой гомогенную экзотермическую реакцию, которой предшествуют переход твердой серы в жидкое состояние и ее последующее испарение:

    Таким образом, процесс горения протекает в газовой фазе в потоке предварительно высушенного воздуха и описывается уравнением:

    S + О2 > SO2 + 297,028 кДж;

    Для сжигания серы используют печи форсуночного и циклонного типов. В форсуночных печах расплавленная сера распыляется в камере сгорания сжатым воздухом через форсунки, которые не могут обеспечить достаточно полного перемешивания паров серы с воздухом и необходимой скорости горения. В циклонных печах, работающих по принципу центробежных пылеуловителей (циклонов), достигается значительно лучшее смешивание компонентов и обеспечивается более высокая интенсивность горения серы, чем в форсуночных печах.

    Затем газ, содержащий 8,5-9,5% SO3, при 200°С поступает на первую стадию абсорбции в абсорбер, орошаемый олеумом и 98%-ной серной кислотой:

    SO3 + Н2О>Н2SO4+130,56 кДж;

    Далее газ проходит очистку от брызг серной кислоты, нагревается до 420°С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной серной кислотой, и затем после очистки от брызг выбрасывается в атмосферу.

    Печной газ при сжигании серы отличается более высоким содержанием оксида серы (IV) и не содержит большого количества пыли. При сжигании самородной серы в нем также полностью отсутствуют соединения мышьяка и селена, являющиеся каталитическими ядами.

    Эта схема отличается простотой и получила название «короткой схемы» (рис. 5).

    Рис. 4.

    1-серная печь; 2-котел-утилизатор; 3 - экономайзер; 4-пусковая топка; 5, 6-теплообменники пусковой топки; 7-контактный аппарат; 8-теплообменники; 9-олеумный абсорбер; 10-сушильная башня; 11 и 12-соотв. первый и второй моногидратные абсорберы; 13-сборники кислоты.


    Рис.5.

    1 -- плавильная камера для серы; 2 -- фильтр жидкой серы; 3 -- печь для сжигания серы; 4 -- котел-утилизатор; 5 -- контактный аппарат; 6 -- система абсорбции оксида-серы (VI); 7-- холодильники серной кислоты

    Существующие установки по производству серной кислоты из серы, снабженные печами циклонного типа, имеют производительность 100 т серы и более в сутки. Разрабатываются новые конструкции производительностью до 500 т/сут.

    Расход на 1 т моногидрата: серы 0,34 т, воды 70 м3, электроэнергии 85 кВт-ч.

    Производство серной кислоты из железного колчедана

    Производство серной кислоты из сульфидов металлов существенно сложнее.

    Технологическая схема производства серной кислоты из железного колчедана с использованием принципа двойного контактирования ДК--ДА показана на рисунке 6. Колчедан через дозатор подают в печь 1 кипящего слоя. Полученный запыленный обжиговый газ, содержащий 13 % SO2 и имеющий на выходе из печи температуру около 700°С, подают сначала в котел-утилизатор 3, а затем на стадию сухой очистки от огарковой пыли (в циклоны 4 и в сухой электрофильтр 5). В котле-утилизаторе 3 происходит охлаждение газа с одновременным получением энергетического водяного пара (давление 4 МПа и температура 450 °С), который может быть использован как в самой установке для компенсации затрат энергии на работу компрессоров и насосов, так и в других цехах завода.

    В очистном отделении, состоящем из двух промывных башен 6 и 7, двух пар мокрых электрофильтров 8 и 9 и сушильной башни 10, происходит очистка газа от соединений мышьяка, селена, фтора и его осушка.

    Первая полая промывная башня 6 работает в испарительном режиме: циркулирующая кислота охлаждает газ, при этом теплота затрачивается на испарение воды из кислоты, поступающей на орошение. Концентрацию орошающей кислоты в первой башне, равную 40... 50%-ной H2SO4, поддерживают постоянной путем разбавления 10... 15%-ной кислотой из второй промывной башни 7. Кислота из второй башни поступает в сборник 18 и после охлаждения возвращается на орошение.

    После второй промывной башни газ проходит последовательно две пары мокрых электрофильтров 8 и 9, затем насадочную сушильную башню 10, орошаемую 93...94%-ной серной кислотой при температуре 28...30°С. Кислота циркулирует между сушильной башней 10 и сборником 18, часть кислоты отводится как готовая продукция на склад. Для поддержания постоянной концентрации H2SO4 в сборник кислоты 18 вводят 98... 99%-ную кислоту из моногидратных абсорберов 17 и 20. Для поддержания постоянной температуры на стадии осушки циркулирующую кислоту охлаждают в холодильнике воздушного охлаждения 22. Перед сушильной башней обжиговый газ разбавляют воздухом для снижения в нем концентрации SO2 до 9 % и увеличения избытка кислорода в соответствии с оптимальными условиями окисления диоксида серы.


    Рис.4.

    1 -- печь; 2 -- система гидроудаления огарка; 3 -- котел-утилизатор; 4 -- циклон с пересыпным устройством; 5 -- сухой электрофильтр; 6-- полая промывная башня; 7-- насадочная промывная башня; 8,9-- мокрые электрофильтры; 10-- сушильная башня; 11-- фильтр-брызгоуловитель; 12 -- турбогазодувка; 13 -- теплообменники контактного узла; 14 -- контактный аппарат; 15 -- пусковой подогреватель; 16 -- теплообменник; 17 -- второй моногидратный абсорбер; 18 -- сборник кислоты; 19 -- холодильник; 20 -- первый моногидратный абсорбер; 21 -- олеумный абсорбер; 22 -- холодильник воздушного охлаждения кислоты

    После сушильной башни обжиговый газ проходит через фильтр-брызгоуловитель 11 и поступает в турбогазодувку 12. В теплообменниках 13 газ нагревается за счет теплоты продуктов реакции до температуры зажигания катализатора (420...440°С) и поступает на первый слой контактного аппарата, где происходит окисление 74 % SO2 с одновременным повышением температуры до 600°С. После охлаждения до 465°С газ поступает на второй слой контактного аппарата, где степень превращения достигает 86%, а температура газа возрастает до 514?С. После охлаждения до температуры 450?С газ поступает на третий слой контактного аппарата, где степень превращения SO2 увеличивается до 94...94,5 %, а температура повышается до 470°С.

    Затем в соответствии с требованиями метода ДК--ДА реакционный газ охлаждают в теплообменниках 13 до 100°С и направляют на абсорбцию первой ступени: сначала в олеумный абсорбер 21, затем в моногидратный абсорбер 20. После моногидратного абсорбера и фильтра-брызгоуловителя газ вновь нагревают до температуры 430°С и подают на четвертый слой катализатора. Концентрация SO2 в газе составляет теперь 0,75...0,85 %. В четвертом слое происходит окисление остаточного SO2 с конверсией? 80 %, сопровождающееся повышением температуры до 449°С. Реакционную смесь вновь охлаждают до температуры 409°С и направляют на последний (пятый) слой контактного аппарата. Общая степень превращения после пяти стадий контактирования составляет 99,9%.

    Газовую смесь после охлаждения направляют в моногидратный абсорбер второй ступени абсорбции 17. Непоглощенный газ, состоящий в основном из воздуха, пропускают через фильтр 11 для выделения брызг и тумана и выбрасывают в атмосферу через выхлопную трубу.

    Производительность установки составляет до 1500 т/сут по моногидрату.

    Расход на 1 т моногидрата: колчедана 0,82 т, воды 50 м3, электроэнергии 82 кВт -ч.

    Производство серной кислоты из сероводорода

    Способ получения серной кислоты из сероводорода, так называемый мокрый катализ (разработчики И.А.Ададуров, Д. Гернст, 1931 г.), состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в потоке воздуха, подается в контактный аппарат без разделения, где оксид серы (IV) окисляется при твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

    Таким образом, в отличие от способов производства серной кислоты из колчедана и серы в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательных стадии :

    1) сжигание сероводорода с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1:1):

    H2S + 1,5О2 > SO2 + Н2О - ?Н

    где?Н = 519 кДж

    2) окисление оксида серы (IV) до оксида серы (VI) с сохранением эквимолекулярное™ состава смеси оксида серы (VI) и паров воды (1:1):

    SO2 + 0,5О2 - SO3 - ?Н 2

    где?Н 2 = 96 кДж

    3) конденсация паров и образование серной кислоты:

    SО3 + Н2О-H2SО4 - ?Н 3

    где?Н 3 = 92 кДж.

    Таким образом, процесс мокрого катализа описывается суммарным уравнением

    H2S + 2О2 > H2SO4 - ?Н

    где?Н= 707 кДж.

    В качестве сырья при производстве серной кислоты по методу мокрого катализа используют высококонцентрированный сероводородный газ (объемная доля сероводорода до 90%), являющийся отходом некоторых производств.

    Так как газ при выделении подвергается промывке, то не нуждается в особой стадии очистки, а продукты его сжигания не содержат вредных примесей и также не требуют очистки. Это наряду с отсутствием в технологической схеме стадии абсорбции существенно упрощает процесс производства.

    Технологическая схема производства серной кислоты из сероводорода включает в себя следующие операции:

    · сжигание сероводородного газа при большом избытке воздуха для исключения перегрева вследствие выделения большого количества теплоты;

    · охлаждение газопаровой смеси от 1000 до 400?С в котле-утилизаторе;

    · разбавление газопаровой смеси воздухом до оптимального для контактирования состава;

    · контактирование в контактных аппаратах, термостатируемых введением воздуха между слоями катализатора;

    · охлаждение конвертированного газа в башнях, орошаемых серной кислотой, с образованием продукционной серной кислоты и сернокислотного тумана, улавливаемого в электрофильтрах.

    Теоретически, при абсолютно сухих сероводородном газе и воздухе, должна образоваться 100%-ная серная кислота. На практике вследствие присутствия в воздухе паров воды концентрация получаемой кислоты не превышает 96 %, при пересчете на сероводород -- 97 %. Производительность существующих установок, работающих по способу мокрого катализа, достигает 300 т/сут по моногидрату серной кислоты.

    Серную кислоту производят в больших количествах на сернокислотных заводах.

    I. Сырьё, используемое для производства серной кислоты:

    II. Подготовка сырья.

    Разберём производство серной кислоты из пирита FeS 2 .

    1) Измельчение пирита.

    Перед использованием большие куски пирита измельчают в дробильных машинах. Вы знаете, что при измельчении вещества скорость реакции увеличивается, т.к. увеличивается площадь поверхности соприкосновения реагирующих веществ.

    2) Очистка пирита.

    После измельчения пирита, его очищают от примесей (пустой породы и земли) методом флотации. Для этого измельчённый пирит опускают в огромные чаны с водой, перемешивают, пустая порода всплывает наверх, затем пустую породу удаляют.

    III. Химизм производства.

    Производство серной кислоты из пирита состоит из трёх стадий.


    ПЕРВАЯ СТАДИЯ - обжиг пирита в печи для обжига в "кипящем слое".

    Уравнение реакции первой стадии

    2Fe 2 O 3 + 8SO 2 + Q

    Измельчённый очищенный влажный (после флотации) пирит сверху засыпают в печь для обжига в "кипящем слое". Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800°С. Пирит раскаляется до красна и находится в "подвешенном состоянии" из-за продуваемого снизу воздуха. Похоже это всё на кипящую жидкость раскалённо-красного цвета.

    За счёт выделяющейся теплоты в результате реакции поддерживается температура в печи. Избыточное количество теплоты отводят: по периметру печи проходят трубы с водой, которая нагревается. Горячую воду используют дальше для центрального отопления рядом стоящих помещений.

    Образовавшийся оксид железа Fe 2 O 3 (огарок) в производстве серной кислоты не используют. Но его собирают и отправляют на металлургический комбинат, на котором из оксида железа получают металл железо и его сплавы с углеродом - сталь (2% углерода С в сплаве) и чугун (4% углерода С в сплаве).

    Таким образом выполняется принцип химического производства - безотходность производства.

    Из печи выходит печной газ, состав которого: SO 2 , O 2 , пары воды (пирит был влажный!) и мельчайшие частицы огарка (оксида железа). Такой печной газ необходимо очистить от примесей твёрдых частиц огарка и паров воды.

    Очистка печного газа от твёрдых частичек огарка проводят в два этапа - в циклоне (используется центробежная сила, твёрдые частички огарка ударяются о стенки циклона и ссыпаются вниз) и в электрофильтрах (используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра, при достаточном накоплении под собственной тяжестью они ссыпаются вниз), для удаления паров воды в печном газе (осушка печного газа) используют серную концентрированную кислоту, которая является очень хорошим осушителем, поскольку поглощает воду.


    Осушку печного газа проводят в сушильной башне - снизу вверх поднимается печной газ, а сверху вниз льётся концентрированная серная кислота. На выходе из сушильной башни печной газ уже не содержит ни частичек огарка, ни паров воды. Печной газ теперь представляет собой смесь оксида серы SO 2 и кислорода О 2 .

    ВТОРАЯ СТАДИЯ - окисление SO 2 в SO 3 кислородом.

    Протекает в контактном аппарате.

    Уравнение реакции этой стадии: 2SO 2 + O 2

    2SO 3 + Q

    Сложность второй стадии заключается в том, что процесс окисления одного оксида в другой является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO 3).


    а) температура:

    Прямая реакция является экзотермической +Q, согласно правилам по смещению химического равновесия, для того, чтобы сместить равновесие реакции в сторону экзотермической реакции, температуру в системе необходимо понижать. Но, с другой стороны, при низких температурах, скорость реакции существенно падает. Экспериментальным путём химики-технологи установили, что оптимальной температурой для протекания прямой реакции с максимальным образованием SO 3 является температура 400-500°С. Это достаточно низкая температура в химических производствах. Для того, чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор. Экспериментальным путём установили, что наилучшим катализатором для этого процесса является оксид ванадия V 2 O 5 .

    б) давление:

    Прямая реакция протекает с уменьшением объёмов газов: слева 3V газов (2V SO 2 и 1V O 2), а справа - 2V SO 3 . Раз прямая реакция протекает с уменьшением объёмов газов, то, согласно правилам смещения химического равновесия давление в системе нужно повышать. Поэтому этот процесс проводят при повышенном давлении.

    Прежде чем смесь SO 2 и O 2 попадёт в контактный аппарат, её необходимо нагреть до температуры 400-500°С. Нагрев смеси начинается в теплообменнике, который установлен перед контактным аппаратом. Смесь проходит между трубками теплообменника и нагревается от этих трубок. Внутри трубок проходит горячий SO 3 из контактного аппарата. Попадая в контактный аппарат смесь SO 2 и О 2 продолжает нагреваться до нужной температуры, проходя между трубками в контактном аппарате.

    Температура 400-500°С в контактном аппарате поддерживается за счёт выделения теплоты в реакции превращения SO 2 в SO 3 . Как только смесь оксида серы и кислорода достигнет слоёв катализатора, начинается процесс окисления SO 2 в SO 3 .

    Образовавшийся оксид серы SO 3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

    ТРЕТЬЯ СТАДИЯ - поглощение SO 3 серной кислотой.

    Протекает в поглотительной башне.

    А почему оксид серы SO 3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде: SO 3 + H 2 O

    H 2 SO 4 . Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды - это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3 .

    Уравнение реакции этого процесса nSO 3 + H 2 SO 4

    H 2 SO 4 ·nSO 3

    Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

    Охрана окружающей среды,

    связанная с производством серной кислоты.

    Основным сырьем для производства серной кислоты, является сера. Она относится к числу наиболее распространенных числу химических элементов на нашей планете.

    Производство серной кислоты происходит в три стадии на первой стадии получают SO 2 , путем обжига FeS 2 , затем SO 3 , после чего на третьей стадии получают серную кислоту.

    Вверх