Повышенная сейсмичность региона. Каменные конструкции в условиях высокой сейсмичности Зона повышенного риска

Территория Российской Федерации, по сравнению с другими , расположенными в сейсмоактивных регионах, в целом характеризуется умеренной сейсмичностью. Исключение составляют регионы Северного Кавказа, и Дальнего Востока, где интенсивность сейсмических сотрясений достигает 8–9 и 9–10 баллов по 12-балльной макросейсмической шкале. Определенную угрозу представляют и 6–7-балльные зоны в густозаселенной Европейской части России.

Первые сведения о сильных землетрясениях на территории России можно обнаружить в исторических документах XVII – XVIII веков. Планомерные же исследования гео-графии и природы землетрясений были начаты в конце XIX –начале XX веков. Они связаны с именами И.В. Мушкетова и А.Н. Орлова, составивших в 1893 г первый каталог землетрясений на территории страны и показавших, что сейсмичность и горообразующие процессы имеют одну и ту же геодинамическую природу. С работ академика князя Б.Б. Голицына, заложившего в 1902 г основы отечественной сейсмологии и мировой сейсмометрии, началась новая эра в изучении природы и причин землетрясений. Благодаря открытию первых сейсмических станций в Пулкове, Баку, Иркутске, Макеевке, Ташкенте и Тифлисе (ныне Тбилиси), впервые стала поступать достоверная информация о сейсмических явлениях на территории Российской империи. Современный сейсмический мониторинг территории России и сопредельных регионов осуществляет Геофизическая служба Российской академии наук (ГС РАН), созданная в 1994 г и объединившая около 300 сейсмостанций страны.

В сейсмическом отношении территория России принадлежит Северной , сейсмичность которой обусловлена интенсивным геодинамическим взаимодействием нескольких крупных - Евразиатской, Африканской, Аравийской, Индо-Австралийской, Китайской, Тихоокеанской, Северо-Американской и Охотоморской. Наиболее подвижны и, следовательно, активны, границы плит, где формируются крупные сейсмогенерирующие орогенические пояса: Альпийско-Гималайский - на юго-западе, Трансазиатский - на юге, пояс Черского - на северо-востоке и - на востоке Северной Евразии. Каждый из поясов неоднороден по строению, прочностным свойствам, сейсмогеодинамике и состоит из своеобразно структурированных сейсмоактивных регионов.

Характерная особенность всех сейсмоактивных регионов - примерно одинаковая их протяженность (около 3000 км), обусловленная размерами древних и современных зон субдукции (погружение океанической в верхнюю мантию Земли), расположенных по периферии океанов, и их орогенических реликтов на континентах. Преобладающее число очагов землетрясений сосредоточено в верхней части земной коры на глубинах до 15–20 км. Самыми глубокими (до 650 км) очагами характеризуется Курило-Камчатская зона субдукции. Землетрясения с промежуточной глубиной залегания очагов (70–300 км) действуют в Восточных ( , зона Вранча, глубина до 150 км), в Центральной Азии ( , зона , глубина до 300 км), а также под Большим Кавказом и в центральной части Каспийского моря (до 100 км и более). Наиболее сильные из них ощущаются на территории России. Каждому региону свойственны определенная периодичность возникновения землетрясений и миграция сейсмической активизации вдоль зон разломов. Размеры (протяженность) очагов обусловливают величину магнитуды землетрясений (M по Ч. Рихтеру). Длина разрыва пород в очагах землетрясений с М=7,0 и выше достигает десятков и сотен километров. Амплитуда смещений земной поверхности измеряется метрами.

Сейсмичность территории России удобно рассматривать по регионам, расположенным в трех основных секторах - на Европейской части России, в Сибири и на Дальнем Востоке. В такой же последовательности представлена и степень изученности сейсмичности этих территорий, основанная не только на инструментальных, но и на исторических сведениях о землетрясениях. Более или менее сопоставимы и надежны результаты наблюдений, выполненные начиная с XIX века.

Европейская часть России

И Урал характеризуются относительно слабой сейсмичностью и редко возникающими здесь местными землетрясениями с магнитудой М=5,5 и интенсивностью до I 0 =6–7 баллов. Такие явления известны в районе городов Альметьевск (1914 г 1986 г), Елабуга (1851 г 1989 г), Вятка (1897 г), Сыктывкар (1939 г).

Не менее сильные землетрясения возникают на , в Предуралье, в районе и в Воронежской области. На и сопредельной с ним территории отмечены и более крупные сейсмические события ( , Кандалакша, 1626 г М=6,3, I 0 =8 баллов). Слабые землетрясения (с М менее 4,0, I 0 =5–6 баллов и менее) возможны практически повсеместно. На северо-западе России ощущаются землетрясения ( , 1817 г), на юге - сильные землетрясения на восточном побережье Каспийского моря ( , Красноводск (ныне Туркменбашы), 1895, Небитдаг, 2000 г), Кавказа (Спитак, Армения, 1988 г), Крыма ( , 1927 г). На обширной площади, в том числе в Москве и , неоднократно наблюдались сейсмические колебания интенсивностью до 3–4 баллов от заглубленных очагов крупных землетрясений, происходящих в Восточных Карпатах (Румыния, зона Вранча, 1802, 1940, 1977, 1986, 1990 гг.). Нередко сейсмическая активность усугубляется техногенным воздействием на литосферную (добыча и других , закачка флюидов в разломы и т.п.). Такие, «индуцированные», землетрясения регистрируются в Республике Татарстан, Пермском крае и в других регионах страны.

Сибирь

Алтай, включая его часть, и Саяны-один из наиболее сейсмоактивных внутриконтинентальных регионов мира. На территории России достаточно сильными местными землетрясениями характеризуется , где известны землетрясения с М=7,0 и I 0 =9 баллов (1800 г 1829 г 1839 г 1950 г) и обнаружены древние геологические следы (палеосейсмодислокации) таких и более крупных сейсмических событий. На самое крупное из последних землетрясений произошло 27 сентября 2003 г в высокогорном Кош-Агачском районе (М=7,5, I 0 =9–10 баллов). Менее значительные по магнитуде (М=6,0–6,6, I 0 =8–9 баллов) землетрясения происходили на Алтае и Западном Саяне и ранее. Крупнейшие сейсмические катастрофы в начале прошлого века имели место в Монгольском Алтае. К их числу относятся Хангайские землетрясения 9 и 23 июля 1905 г Первое из них, по определению американских сейсмологов Б. Гутенберга и Ч. Рихтера, имело магнитуду М=8,4, а сейсмический эффект в эпицентральной области составил I 0 =11–12 баллов. Магнитуда и сейсмический эффект второго землетрясения, по их же оценкам, близки к предельным величинам магнитуд и сейсмического эффекта - М=8,7, I 0 =12 баллов. Оба землетрясения ощущались на огромной территории Российской империи, на расстояниях до 2000 км от эпицентра. В Иркутской, Томской, Енисейской губерниях и по всему интенсивность сотрясений достигала 6–7 баллов. Другими сильными землетрясениями на сопредельной с Россией территории были Монголо-Алтайское (1931 г М=8,0, I 0 =10 баллов), Гоби-Алтайское (1957 г М=8,2, I 0 =11 баллов) и Моготское (1967 г М =7,8, I 0 =10–11 баллов).

Байкальская рифтовая зона - уникальный сейсмогеодинамический регион мира. Впадина представлена тремя сейсмоактивными котловинами - южной, средней и северной. Аналогичная свойственна и проявлению сейсмичности восточнее озера, вплоть до реки Олёкма. Восточнее Олёкмо-Становая сейсмоактивная зона трассирует границу между Евразиатской и Китайской литосферными плитами (некоторые исследователи выделяют еще промежуточную, меньшую по площади, Амурскую плиту). На стыке Байкальской зоны и Восточного сохранились следы древних землетрясений с М=7,7 и выше (I 0 =10–11 баллов). В 1862 г при землетрясении I 0 =10 баллов в северной части дельты реки ушел под воду участок суши площадью 200 км 2 с шестью улусами, в которых проживало 1300 чел., и образовался залив Провал. Среди относительно недавних крупных землетрясений - Мондинское (1950 г М=7,1, I 0 =9 баллов), Муйское (1957 г М=7,7, I 0 =10 баллов) и Среднебайкальское (1959 г М=6,9, I 0 =9 баллов). В результате последнего землетрясения дно в средней котловине озера опустилось на 15–20 м.

Верхояно-Колымский регион принадлежит поясу Черского, протягивающемуся в юго-восточном направлении от устья реки Лена к побережью , Северной и Командорским островам. Самые сильные из известных в Республике Саха (Якутия) землетрясений - два Булунские (1927 г М=6,8 и I 0 =9 баллов каждое) в низовьях реки Лена и Артыкское (1971 г М=7,1, I 0 =9 баллов) - у границы Республики Саха (Якутия) с Магаданской областью. Менее значительные сейсмические события с магнитудой до М=5,5 и интенсивностью I 0 =7 баллов наблюдались на территории Западно-Сибирской платформы.

Арктическая рифтовая зона является северо-западным продолжением сейсмоактивной структуры Верхояно-Колымского региона, уходящей узкой полосой в океан и соединяющейся на западе с аналогичной рифтовой зоной Срединно-Атлантического хребта. На шельфе в 1909 г и 1964 г произошли два землетрясения с магнитудой М=6,8.

Дальний Восток

Курило-Камчатская зона является классическим примером субдукции Тихоокеанской литосферной плиты под материк. Она протягивается вдоль восточного побережья Камчатки, Курильских островов и острова Хоккайдо. Здесь возникают самые крупные в Северной Евразии землетрясения с М=8,0 и сейсмическим эффектом I 0 =10 баллов. Структура зоны четко прослеживается по расположению очагов в плане и на глубине. Протяженность ее вдоль дуги примерно 2500 км по глубине - свыше 650 км толщина - около 70 км угол наклона к - до 50°. Сейсмический эффект на земной поверхности от глубоких очагов относительно невысок. Определенную сейсмическую опасность представляют землетрясения, связанные с деятельностью Камчатских вулканов (1827 г при Авачинская Сопка интенсивность сотрясений достигала в Петропавловске-Камчатском 6–7 баллов). Самые сильные (М=8,0–8,5, I 0 =10–11 баллов) землетрясения возникают на глубине до 80 км в сравнительно узкой полосе между океаническим желобом, Камчатка и Курильскими островами (1737, 1780, 1792, 1841, 1918, 1923, 1952, 1958, 1963, 1969, 1994, 1997 гг. и др.). Большинство из них сопровождалось мощными высотой 10–15 м и более. Наиболее изучены Шикотанское (1994 г М=8,0, I 0 =9–10 баллов) и Кроноцкое (1997 г М=7,9, I 0 =9–10 баллов) землетрясения, возникшие у Южных Курильских островов и восточного побережья Камчатки. Шикотанское землетрясение сопровождалось волной цунами высотой до 10 м сильными афтершоками и большими разрушениями на островах Шикотан, Итуруп и Кунашир. Погибли 12 человек, причинен огромный материальный ущерб.

Сахалин представляет собой северное продолжение Сахалино-Японской островной дуги и трассирует границу Охотоморской и Евразиатской плит. До катастрофического Нефтегорского землетрясения (1995 г М=7,5, I 0 =9–10 баллов) сейсмичность острова представлялась умеренной и здесь ожидались лишь землетрясения интенсивностью до I 0 =6–7 баллов. Нефтегорское землетрясение было самым разрушительным из известных за все время на территории Российской Федерации. Погибло около 2000 чел. В результате полностью ликвидирован поселок Нефтегорск. Можно полагать, что техногенные факторы (бесконтрольная откачка нефтепродуктов) сыграли роль спускового механизма для накопившихся к этому моменту упругих геодинамических напряжений в регионе. Монеронское землетрясение (1971 г М=7,5), произошедшее на шельфе в 40 км юго-западнее , на побережье ощущалось интенсивностью около 7 баллов. Крупным сейсмическим событием было Углегорское землетрясение (2000 г М=7,1, I 0 =9 баллов). Возникнув в южной части острова, вдалеке от населенных пунктов, оно практически не принесло ущерба, но подтвердило повышенную сейсмическую опасность острова Сахалин.

Приамурье и характеризуются умеренной сейсмичностью. Из известных здесь землетрясений пока только одно на севере Амурской области достигло магнитуды М=7,0 (1967 г I 0 =9 баллов). В будущем магнитуды потенциальных землетрясений на юге Хабаровского края также могут оказаться не менее М=7,0, а на севере Амурской области не исключены землетрясения с М=7,5 и выше. Наряду с внутрикоровыми, в Приморье ощущаются глубокофокусные землетрясения юго-западной части Курило-Камчатской зоны субдукции. Землетрясения на шельфе нередко сопровождаются цунами высотой до 3–4 м.

И Корякское нагорье еще недостаточно изучены в сейсмическом отношении из-за отсутствия здесь необходимого числа сейсмических станций. В 1928 г у восточного побережья Чукотки возник рой сильных землетрясений с магнитудами M =6,9, 6.3, 6,4 и 6,2. Там же в 1996 г произошло землетрясение с М=6,2. В Корякском нагорье до 1991 г самым сильным из ранее известных было Хаилинское землетрясение 1991 г (М=7,0, I 0 =8–9 баллов). Еще более значительное землетрясение (М=7,6, I 0 =9–10 баллов) произошло в этой же эпицентральной области 21 апреля 2006 г В результате сильно пострадали населенные пункты Хаилино, Тиличики и Корф.

Сейсмическое районирование территории России

С целью прогноза сейсмической опасности и обеспечения сейсмостойкого строительства необходимыми инженерными данными в 1991–1997 гг. на основе новой методологии в Институте физики Земли им. РАН создан комплект карт общего сейсмического районирования Российской Федерации - ОСР-97. Дифференцированные оценки сейсмической опасности позволяют использовать этот комплект карт для проектирования и строительства сейсмостойких объектов разных категорий ответственности и сроков службы.

Универсальный фундамент Технология ТИСЭ Яковлев Р. Н.

9.5. ПОВЫШЕННАЯ СЕЙСМИЧНОСТЬ РЕГИОНА

9.5. ПОВЫШЕННАЯ СЕЙСМИЧНОСТЬ РЕГИОНА

Из газеты "Строительный эксперт", декабрь 1998 г., №23

"…Особенно остро проблемы, связанные с надежностью домов, возникают при строительстве в районах с повышенной сейсмической активностью. Для России - это Дальний Восток и Северный Кавказ. Для многих стран СНГ сейсмические районы - это вся их территория или существенная её часть.

Взять под квалифицированный контроль всё индивидуальное строительство, конечно, невозможно. Другой путь - создание весьма привлекательных строительных технологий, позволяющих в любых условиях обеспечить высокий запас надежности возводимых зданий с комфортным проживанием в них… К такой технологии можно отнести ТИСЭ…."

Нас интересует природа землетрясений, их физические параметры и степень влияния на сооружения.

Основными причинами землетрясений являются перемещения блоков и плит земной коры. По сути, кора Земли - это плиты, плавающие на поверхности жидкой магматической сферы. Приливные явления, обусловленные притяжением Луны и Солнца, беспокоят эти плиты, отчего по линиям их стыка накапливаются высокие напряжения. Достигая критической величины, эти напряжения сбрасываются в виде землетрясений. Если очаг землетрясения находится на материке, то в эпицентре и вокруг него возникают сильные разрушения, если же эпицентр находится в океане, то перемещения коры вызывают цунами. В зоне больших глубин это еле заметная волна. У берега её высота может достичь десятков метров!

Нередко причиной колебаний грунта могут быть местные оползни, сели, провалы техногенного характера, вызванные созданием полостей (горные выработки, забор воды из артезианских скважин…).

В России принята 12–балльная шкала оценки силы землетрясения. Главным признаком здесь является степень повреждения зданий и сооруж<ений. Районирование территории России по балльному принципу приводится в строительных нормах (СНиП II -7-81).

Почти 20% территории нашей страны находится в сейсмически опасных зонах с интенсивностью землетрясений 6 - 9 баллов и 50% подвержены 7 - 9 -балльным землетрясениям.

С учетом того, что технологией ТИСЭ интересуются не только в России, но и в странах СНГ, приводим карту районирования России и соседних стран, находящихся в сейсмически активных зонах (рис. 181).

Рис. 181. Карта сейсмического районирования России и соседних стран

На территории нашей страны выделяют следующие сейсмически опасные зоны: Кавказ, Саяны, Алтай, Прибайкалье, Верхоянск, Сахалин и Приморье, Чукотка и Корякское нагорье.

Строительство в сейсмически опасных зонах требует применения конструкций увеличенной прочности, жесткости и устойчивости, что вызывает удорожание строительства в 7–балльной зоне на 5%, в 8–балльной - на 8% и в 9–балльной - на 10%.

Некоторые особенности сейсмических нагружений элементов здания:

При землетрясении здание подвергается воздействию волн нескольких типов: продольных, поперечных и поверхностных;

Наибольшие разрушения вызывают горизонтальные колебания земли, при них разрушающие нагрузки носят инерционный характер;

Наиболее характерные периоды колебаний почвы лежат в диапазоне 0,1 - 1,5 сек;

Максимальные ускорения составляют 0,05 - 0,4 g, причем наибольшие ускорения приходятся на периоды 0,1 - 0,5 сек, чему соответствуют минимальные амплитуды колебаний (около 1 см) и максимальные разрушения зданий;

Большому периоду колебаний соответствуют минимальные ускорения и максимальные амплитуды колебаний почвы;

Снижение массы конструкции ведет к снижению инерционных нагрузок;

Вертикальное армирование стен здания целесообразно при наличии горизонтальных несущих слоев в виде, например, железобетонных перекрытий;

Сейсмоизоляция зданий - наиболее перспективный способ повышения их сейсмоустойчивости.

Это интересно

Идея сейсмоизоляции зданий и сооружений возникла в далекой древности. При археологических раскопках в Средней Азии были обнаружены под стенами зданий Хека камышитовые маты. Аналогичные конструкции применялись в Индии. Известно, что землетрясение 1897 г. в районе Шиллонга разрушило почти все каменные здания, кроме тех, которые были построены на сейсмоамортизаторах, хотя и примитивной конструкции.

Строительство зданий и сооружений в сейсмоактивных регионах требует выполнения сложных инженерных расчетов. Сейсмостойкие строения, возводимые индустриальными методами, проходят глубокие и всесторонние проработки и сложные расчеты с привлечением большого числа специалистов. Индивидуальному застройщику, решившему построить свой домик, такие дорогостоящие методы недоступны.

Технология ТИСЭ предлагает повышение сейсмоустойчивости зданий, возводимых в условиях индивидуального строительства, сразу по трем направлениям: снижение инерционных нагрузок, повышение жесткости и прочности стен, а также введение механизма сейсмоизоляции.

Высокая степень пустотности стен позволяет значительно снизить инерционные нагрузки на здание, а наличие сквозных вертикальных пустот дает возможность вводить вертикальное армирование, органично вписанное в конструкцию самих стен. По иным технологиям индивидуального строительства это выполнить довольно сложно.

Механизмом сейсмоизоляции является столбчато–ленточный фундамент, возведенный по технологии ТИСЭ.

В качестве вертикальной арматуры фундаментного столба используется пруток диаметром 20 мм из углеродистой стали, который проходит через ростверк. Пруток имеет гладкую поверхность, покрытую гудроном. Снизу он снабжен законцовкой, заделанной в тело столба, а сверху - законцовкой, выступающей из ростверка и снабженной резьбой М20 под гайку (патент РФ № 2221112 от 2002 г.). Сама опора входит в массив ростверка на 4…6 см (рис. 182, а) .

Рис. 182. Сейсмоизолирующий фундамент с центральным прутком: А - нейтральное положение опоры фундамента; Б - отклоненное положение опоры фундамента; 1 - опора; 2 - пруток; 3 - законцовка нижняя; 4 - гайки; 5 - ростверк; 6 - полость с песком; 7 - отмостка; 8 - направления колебаний грунта

После бетонирования вокруг каждой из опор тем же фундаментным буром делают три–четыре полости глубиной 0,6…0,8 м и заполняют их или песком, или смесью песка с керамзитом, или шлаком. В песчаном грунте такие полости можно не выполнять.

По окончании строительства гайки прутков затягиваются тарированным ключом. Так в зоне стыка столба с ростверком создается "упругий" шарнир.

При горизонтальных колебаниях почвы столбы отклоняются относительно упругого шарнира, пруток растягивается, при этом ростверк со зданием по инерции остаются неподвижными (рис. 182, б). Упругость почвы и прутков возвращает столбы в исходное вертикальное положение. В течение всего срока эксплуатации здания к узлам натяжения арматуры столбов должен быть обеспечен свободный подход как по внешнему периметру дома, так и под внутренними силовыми стенами. После завершения строительства и после значительных сейсмических колебаний затяжку всех гаек восстанавливают тарированным ключом (М = 40 - 70 кг/м). Такой вариант сейсмо–изолирующего фундамента можно считать в какой?то степени индустриальным, так как он включает прутки и гайки, которые проще изготовить на производстве.

Технологией ТИСЭ предусмотрено выполнение сейсмоизолирующих опор и более демократичным способом, доступным застройщикам с ограниченными производственными возможностями. В качестве армирующего упругого элемента используют две скобы из прутка арматуры диаметром 12 мм с загнутыми законцовками (рис. 183). Средняя часть ветвей арматуры на длине около 1 м смазывается гудроном или битумом (в равном удалении от краев), чтобы исключить сцепление арматуры с бетоном. При сейсмических колебаниях почвы прутки арматуры в средней своей части растягиваются. При горизонтальных смещениях почвы в 5 см арматура растягивается на 3…4 мм. При длине зоны растяжения 1 м в арматуре возникают напряжения 60…80 кг/мм 2 , что лежит в зоне упругих деформаций материала арматуры.

Рис. 183. Сейсмоизолирующий фундамент с арматурными скобами: 1 - опора; 2 - скоба; 3 - ростверк; 4 - полость с песком

При строительстве дома в сейсмоактивных зонах гидроизоляцию по соединению ростверка со стенами не делают (для исключения их относительного смещения). По технологии ТИСЭ гидроизоляцию выполняют по стыку ростверка с фундаментными столбами (два слоя рубероида на битумной мастике).

При строительстве смежных сооружений, крыльца, элементов отмостки и т. п. следует постоянно обращать внимание на то, чтобы лента фундамента не касалась их своей боковой поверхностью. Зазор между ними должен быть не менее 4 - 6 см. При необходимости допускается подобный контакт (с крыльцом, каркасом легких щитовых пристроек, веранды) из соображения, что после разрушения землетрясением они будут восстановлены.

Это не фундамент, но…

При строительстве в сейсмоакивных районах применение кровли из глиняной или пескобетонной черепицы должно быть обоснованным.

Многие японские дома индивидуальной постройки, имеющие легкий каркас, покрыты добротной глиняной черепицей. В условиях плотной японской застройки такие дома хорошо переносят тайфуны. Однако при землетрясении под тяжестью черепичной крыши дом рушится, погребая жителей под своей непомерной тяжестью.

В настоящее время на строительном рынке появилось много "легких" кровельных материалов, хорошо имитирующих черепицу. Легкая кровля - это минимальные инерционные нагрузки для соединения крыши со стенами и исключение обрушения кровли от излишнего ее веса.

Сейсмические (от греческого - сотрясение) явления проявля­ются в виде упругих колебаний земной коры. Это грозное явле­ние природы типично районам геосинклиналей, где активно дей­ствуют современные горообразовательные процессы, а также зонам субдукции и обдукции.

Сотрясения сейсмического происхождения происходят почти непрерывно. Специальные приборы регистрируют в течение года более 100 тысяч землетрясений, но из них, к счастью, только около 100 приводят к разрушительным последствиям и отдель­ные - к катастрофам с гибелью людей, массовыми разрушения­ми зданий и сооружений (рис. 45).

Землетрясения возникают также в процессе извержения вулка­нов (в России, например, на Камчатке), возникновения провалов в связи с обрушением горных пород в крупные подземные пещеры, узкие глубокие долины, а также в результате мощных взры­вов, производимых, например, в строительных целях. Разрушите­льное действие таких землетрясений невелико и они имеют местное значение, а наиболее разрушительными являются текто­нические сейсмические явления, захватывающие, как правило, большие площади

История знает катастрофические землетрясения, когда погиба­ли десятки тысяч людей и разрушались целые города или их боль­шая часть (г. Лиссабон - 1755 г., г. Токио - 1923 г., г. Сан-Фран­циско - 1906 г., Чили и остров Сицилия - 1968 г.). Только в первой половине XX в. их было 3749, при этом только в Прибай­калье произошло 300 землетрясений. Наиболее разрушитель­ные - в городах Ашхабаде (1948) и Ташкенте (1966).

Исключительное по силе катастрофическое землетрясение про­изошло 4 декабря 1956 г в Монголии, зафиксированное также на территории Китая и России. Оно сопровождалось огромными раз­рушениями. Один из горных пиков раскололся пополам, часть го­ры высотой 400 м обрушилась в ущелье. Образовалась сбросовая впадина длиной до 18 км и шириной 800 м. На поверхности земли появились трещины шириной до 20 м. Главная из этих трещин протянулась до 250 км.

Наиболее катастрофическим было землетрясение 1976 г., про­исшедшее в г. Таншань (Китай), в результате которого погибло 250 тыс. человек в основном под обрушившимися зданиями из глины (сырцового кирпича).

Тектонические сейсмические явления возникают как на дне океанов, так и на суше. В связи с этим различают моретрясения и землетрясения.

Моретрясения возникают в глубоких океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрые поднятия и опускания дна океанов вызывают смещение крупных масс горных пород и на поверхности океана порождают пологие волны (цунами) с расстоянием между гребнями до 150 км и очень небольшой высотой над большими глубинами океана. При подхо­де к берегу вместе с подъемом дна, а иногда сужением берегов в бухтах высота волн увеличивается до 15-20 м и даже 40 м.

Цунами перемещаются на расстояния в сотни и тысячи кило­метров со скоростью 500-800 и даже более 1000 км/ч. По мере уменьшения глубины моря крутизна волн резко возрастает и они со страшной силой обрушиваются на берега, вызывая разруше­ния сооружений и гибель людей. При моретрясении 1896 г. в Японии были отмечены волны высотой 30 м. В результате уда­ра о берег они разрушили 10 500 домов, погибло более 27 тыс. человек.

От цунами чаще всего страдают Японские, Индонезийские, Филиппинские и Гавайские острова, а также тихоокеанское побе­режье Южной Америки. В России это явление наблюдается на восточных берегах Камчатки и Курильских островах. Последнее катастрофическое цунами в этом районе возникло в ноябре 1952 г. в Тихом океане, в 140 км от берега. Перед приходом волны море отступило от берега на расстояние 500 м, а через 40 мин на побе­режье обрушилось цунами с песком, илом и различными обломка­ми. Затем последовала вторая волна высотой до 10-15 м, которая довершила разрушение всех построек, расположенных ниже деся­тиметровой отметки.

Самая высокая сейсмическая волна - цунами поднялась у по­бережья Аляски в 1964 г.; высота ее достигла 66 м, а скорость 585 км/ч.

Частота возникновения цунами не столь велика, как у земле­трясений. Так, за 200 лет на побережье Камчатки и Курильских островов их наблюдалось всего 14, из которых четыре были ката­строфическими.

На побережье Тихого океана в России и других странах со­зданы специальные службы наблюдения, которые оповещают о приближении цунами. Это позволяет вовремя предупредить и укрыть людей от опасности. Для борьбы с цунами возводят ин­женерные сооружения в виде защитных насыпей, железобетон­ных молов, волноотбойных стенок, создают искусственные отме­ли. Здания размещают на высокой части рельефа.

Землетрясения. Сейсмические волны. Очаг зарождения сейсми­ческих волн называют гипоцентром (рис. 46). По глубине залега­ния гипоцентра различают землетрясения: поверхностные - от 1 до 10 км глубины, коровью - 30-50 км и глубокие (или плуто­нические) - от 100-300 до 700 км. Последние находятся уже в мантии Земли и связаны с движениями, происходящими в глу­бинных зонах планеты. Такие землетрясения наблюдались на Да­льнем Востоке, в Испании и Афганистане. Наиболее разрушите­льными являются поверхностные и коровые землетрясения.


Непосредственно над гипоцентром на поверхности земли рас­полагается эпицентр. На этом участке сотрясение поверхности происходит в первую очередь и с наибольшей силой. Анализ землетрясений показал, что в сейсмически активных районах Земли 70 % очагов сейсмических явлений располагаются до глу­бины 60 км, но наиболее сейсмичной все же является глубина от 30 до 60 км.

От гипоцентра во все стороны расходятся сейсмические волны, по своей природе являющиеся упругими колебаниями. Различают продольные и поперечные сейсмические волны, как упругие коле­бания, распространяющиеся в земле от очагов землетрясений, взрывов, ударов и других источников возбуждения. Сейсмические волны - продольные, или /*-волны (лат.primae - первые), приходят к поверхности земли первыми, так как имеют скорость в 1,7 раза большую, чем поперечные волны;поперечные, или 5-волны (лат.secondae - вторые), иповерхностные, илиL-волны (лат.1оп- qeg - длинный). ДлиныL-волн больше, а скорости меньше, чем уР- и 5-волн. Продольные сейсмические волны - волны сжатия и растяжения среды в направлении сейсмических лучей (во все сто­роны от очага землетрясения или другого источника возбуждения); поперечные сейсмические волны - волны сдвига в направлении, перпендикулярном сейсмическим лучам; поверхностные сейсмиче­ские волны - волны, распространяющиеся вдоль поверхности земли.L-волны подразделяют на волны Лява (поперечные колеба­ния в горизонтальной плоскости, не имеющие вертикальной со­ставляющей) и волны Рэлея (сложные колебания, имеющие верти­кальную составляющую), названные так в честь открывших их ученых. Наибольший интерес для инженера-строителя имеют про­дольные и поперечные волны. Продольные волны вызывают рас­ширение и сжатие пород в направлении их движения. Они рас­пространяются во всех средах - твердых, жидких и газообразных. Скорость их зависит от вещества пород. Это можно видеть из при­меров, приведенных в табл. 11. Поперечные колебания перпенди­кулярны продольным, распространяются только в твердой среде и вызывают в породах деформации сдвига. Скорость поперечных волн примерно в 1,7 раза меньше, чем продольных.

На поверхности земли от эпицентра во все стороны расходятся волны особого рода - поверхностные, являющиеся по своей при­роде волнами тяжести (подобно морским валам). Скорость их рас­пространения более низкая, чем у поперечных, но они оказывают на сооружения не менее пагубное влияние.

Действие сейсмических волн или, иначе говоря, продолжитель­ность землетрясений, обычно проявляется в течение нескольких секунд, реже минут. Иногда наблюдаются длительные землетрясе­ния. Например, на Камчатке в 1923 г. землетрясение продолжалось с февраля по апрель месяц (195 толчков).

Таблица 11

Скорость распространения продольных (v p) и поперечных (v s ) волн в различных породах и в воде, км/сек

Горные породы

v r

v s

Скальные (граниты, гнейсы, песчаники, известняки и др.)

Полускальные (гипсы, мергели, глини­стые сланцы)

Крупнообломочные (галечники, гравий и др.)

Песчаные (пески разной крупности)

0,35-0,85

Глинистые (глины, суглинки, супеси)

0,35-0,8

Насыпные грунты и почвы

0,1-0,27

Мерзлые (песчано-глинистые)

0,5-1,25

1,43-1,48


Оценка силы землетрясений. За землетрясениями ведут посто­янные наблюдения при помощи специальных приборов - сей­смографов, которые позволяют качественно и количественно оценивать силу землетрясений.

Сейсмические шкалы (гр. seismos -землетрясение + лат.sca - la - лестница) используют для оценки интенсивности колебаний (сотрясений) на поверхности Земли при землетрясениях в баллах. Первую (из близких к современным) 10-балльную сейсмическую шкалу составили в 1883 г. совместно М. Росси (Италия) и Ф. Фо­рель (Швейцария). В настоящее время большинство стран мира используют 12-балльные сейсмические шкалы: «ММ» в США (усо­вершенствованная шкала Меркалли-Конкани-Зиберга); Между­народнаяMSK-64 (по фамилии авторов С. Медведева, В. Шпон- хойера, В. Карника, созданная в 1964 г.); Института физики Земли АН СССР и др. В Японии используется 7-балльная шкала, состав­ленная Ф. Омори (1900) и в последующем многократно пе­реработанная. Балльность по шкалеMSK-64 (уточненной и дополненной Межведомственным советом по сейсмологии и сей­смостойкому строительству в 1973 г.) устанавливается:

    по поведению людей и предметов (от 2 до 9 баллов);

    по степени повреждения или разрушения зданий и сооруже­ний (от 6до10баллов);

    по сейсмическим деформациям и возникновению других природных процессов и явлений (от 7 до 12 баллов).

Очень известной является шкала Рихтера, предложенная в 1935 г. американским сейсмологом Ч.Ф. Рихтером, теоретически обоснованная совместно с Б. Гутенбергом в 1941-1945 гг.шкала магнитуд (М); уточненная в 1962 г. (Московско-Пражская шкала) и рекомендованная Международной ассоциацией сейсмологии и физики недр Земли в качестве стандартной. По этой шкале маг­нитуда любого землетрясения определяется как десятичный лога­рифм максимальной амплитуды сейсмической волны (выражен­ной в микрометрах), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра. При других расстояниях от эпицентра до сейсмостанции вводится поправка к замеренной амплитуде с целью приведения ее к той, которая соответствует стандартному расстоянию. Нуль шкалы Рихтера (М = 0) дает очаг, при котором амплитуда сейсмической волны на расстоянии 100 км от эпицентра будет равна 1 мкм, или 0,001 мм. При уве­личении амплитуды в10раз магнитуда возрастает на единицу. При амплитуде, меньшей 1 мкм, магнитуда имеет отрицатель­ные значения; известные максимальные значения магнитуд М =8,5...9.Магнитуда - расчетная величина, относительная ха­рактеристика сейсмического очага, не зависящая от места распо­ложения записывающей станции; используется для оценки общей энергии, выделившейся в очаге (установлена функциональная за­висимость между магнитудой и энергией).

Энергия, выделившаяся в очаге, может выражаться абсолют­ной величиной (Е , Дж), величиной энергетического класса(K = lgE ) или условной величиной, называемой магнитудой,.

Магнитуда самых больших землетрясений М = 8,5...8,6, что соответствует выделению энергииили семнадцатому - восемнадцатому энергетическим классам. Интенсивность проявления землетрясений на поверхности земли (сотрясаемость на поверхности) определяется по шкалам сейсми­ческой интенсивности и оценивается в условных единицах - бал­лах. Балльность(I ) является функцией магнитуды (М), глубины очага (h) и расстояния от рассматриваемой точки до эпицент­ра(L ):

Ниже приводятся сравнительные характеристики разных групп землетрясений (табл, 12).

Для расчетов силовых воздействий (сейсмических нагрузок), оказываемых землетрясениями на здания и сооружения, исполь­зуют понятия: ускорение колебаний (а), коэффициент сейсмич­ности (к с) и максимальное относительное смещение (0.

На практике силу землетрясений измеряют в баллах. В Рос­сии используется 12-балльная шкала. Каждому баллу соответству­ет определенное значение ускорения колебания а (мм/с 2). В табл. 13 приведена современная 12-балльная шкала и дана крат­кая характеристика последствиям землетрясений.

Сейсмические районы территории России. Вся земная поверх­ность разделена на зоны: сейсмические, асейсмические и пене­сейсмические. Ксейсмическим относят районы, которые располо­жены в геосинклинальных областях. Васейсмических районах землетрясений не бывает (Русская равнина, Западная и Северная Сибирь). Впенесейсмических районах землетрясения происходят сравнительно редко и бывают небольшой силы.

Для территории России составлена карта распространения землетрясений с указанием баллов. К сейсмическим районам от­носятся Кавказ, Алтай, Забайкалье, Дальний Восток, Сахалин, Курильские острова, Камчатка. Эти районы занимают пятую часть территории, на которой располагаются крупные города. В настоящее время эта карта обновляется и в ней будут содержать­ся сведения о повторяемости землетрясений во времени.

Землетрясения способствуют развитию чрезвычайно опасных гравитационных процессов - оползней, обвалов, осыпей. Как пра­вило, все землетрясения от семи баллов и выше сопровождаются этими явлениями, причем катастрофического характера. Повсеме­стное развитие оползней и обвалов наблюдалось, например, во время Ашхабадского землетрясения (1948), сильного землетрясе­ния в Дагестане (1970), в долине Чхалты на Кавказе (1963), в долине р. Нарын (1946), когда сейсмические колебания вывели из состояния равновесия крупные массивы выветрелых и разрушен­ных пород, которые располагались в верхних частях высоких скло­нов, что вызвало подпруживание рек и образование крупных гор­ных озер. Существенное влияние на развитие оползня оказывают и слабые землетрясения. В этих случаях они являются как бы тол­чком, спусковым механизмом уже подготовленного к обрушению массива. Так, на правом склоне долины р. Актуры в Киргизии по­сле землетрясения в октябре 1970 г. образовались три обширных оползня. Зачастую не столько сами землетрясения оказывают вли­яние на здания и сооружения, сколько вызванные ими оползневые и обвальные явления (Каратегинское, 1907 г., Сарезское, 1911 г., Файзабадское, 1943 г., Хаитское, 1949 г., землетрясения). Объем массы сейсмического обвала (обвал - обрушение), расположенно­го в сейсмоструктуре Бабха (северный склон хребта Хамар-Дабан, Восточная Сибирь), составляет около 20 млн м 3 . Сарезское земле­трясение силой 9 баллов, происшедшее в феврале 1911 г., сбросило с правого берега р. Мургаб в месте впадения в нее Усой-Дарьи2,2млрд м 3 горной массы, что привело к образованию плотины высотой 600-700 м, шириной 4 км, длиной6км и озера на высо­те 3329 м над уровнем моря объемом 17-18 км 3 , площадью зерка­ла 86,5 км 2 , длиной 75 км, шириной до 3,4 км, глубиной 190 м. Под завалом оказалось небольшое селение, а под водой киш­лак Сарез.

В результате сейсмического воздействия при Хаитском земле­трясении (Таджикистан, 10 июля 1949 г.) силой 10 баллов большое развитие получили обвальные и оползневые явления на склоне хребта Тахти, после чего сформировались земляные лавины и се­левые потоки 70-метровой толщины со скоростью 30 м/с. Объем селевого потока - 140 млн м 3 , площадь разрушений - 1500 км 2 .

Строительство в сейсмических районах (сейсмическое микрорай­онирование). При строительных работах в районах землетрясений необходимо помнить, что баллы сейсмических карт характеризу­ют только некоторые усредненные грунтовые условия района и поэтому не отражают конкретных геологических особенностей той или иной строительной площадки. Эти баллы подлежат уточ­нению на основе конкретного изучения геологических и гидроге­ологических условий строительной площадки (табл. 14). Это до­стигается увеличением исходных баллов, полученных по сейсмической карте, на единицу для участков, сложенных рых­лыми породами, в особенности увлажненными, и их уменьшени­ем на единицу для участков, сложенных прочными скальными породами. Породы II категории по сейсмическим свойствам свою исходную балльность сохраняют без изменения.

Корректировка баллов строительных участков справедлива, главным образом, для равнинных или холмистых территорий. Для горных районов необходимо принимать во внимание и дру­гие факторы. Опасными для строительства являются участки с сильно расчлененным рельефом, берега рек, склоны оврагов и ущелий, оползневые и карстовые участки. Крайне опасны участ­ки, расположенные вблизи тектонических разрывов. Весьма зат­руднительно строить при высоком залегании уровня грунтовых вод (1-3 м). Следует учитывать, что наибольшие разрушения при землетрясениях происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотненных породах, которые при сейсмическом сотрясении энергично доуплотняют- ся, разрушая выстроенные на них здания и сооружения.

При ведении инженерно-геологических изысканий в сейсми­ческих районах требуется выполнять дополнительные работы, регламентированные соответствующим разделом СНиП 11.02-96 и СП 11.105-97.

На территориях, где сила землетрясений не превышает 7 бал­лов, основания зданий и сооружений проектируют без учета сей­смичности. В сейсмических районах, т. е. районах с расчетной сейсмичностью 7, 8и 9 баллов, проектирование оснований ведут в соответствии с главой специального СНиПа по проектирова­нию зданий и сооружений в сейсмических районах.

В сейсмических районах не рекомендуется прокладывать во­доводы, магистральные линии и канализационные коллекторы в водонасыщенных грунтах (кроме скальных, полускальных и круп­нообломочных), в насыпных грунтах независимо от их влажно­сти, а также на участках с тектоническими нарушениями. Если основным источником водоснабжения являются подземные воды трещиноватых и карстовых пород, дополнительным источником всегда должны служить поверхностные водоемы.

Большое практическое значение для жизни и производствен­ной деятельности человека имеет предсказание момента начала землетрясения и его силы. В этой работе уже имеются заметные успехи, но в целом проблема прогнозирования землетрясений еще находится на стадии разработки.

Вулканизм - это процесс прорыва магмы из глубин земной коры на поверхность земли.Вулканы - геологические образова­ния в виде гор и возвышений конусовидной, овальной и других форм, возникшие в местах прорыва магмы на земную поверх­ность.

Вулканизм проявляется в районах субдукций и обдукций, а внутри литосферных плит - в зонах геосинклиналей. Наибольшее количество вулканов расположено вдоль побережья Азии и Амери­ки, на островах Тихого и Индийского океанов. Вулканы имеются также на некоторых островах Атлантического океана (у побережья Америки), в Антарктиде и Африке, в Европе (Италия и Ислан­дия). Различают вулканы действующие и потухшие. Действующими называют те вулканы, которые постоянно или периодически из­вергаются;потухшими - те, которые прекратили свое действие, и об их извержениях нет данных. В ряде случаев потухшие вулканы снова возобновляют свою деятельность. Так было с Везувием, нео­жиданное извержение которого произошло в 79 г. н. э.

На территории России вулканы известны на Камчатке и на Ку­рильских островах (рис. 47). На Камчатке расположено 129 вулка­нов, из них 28 действующих. Наибольшую известность получил вулкан Ключевская сопка (высота 4850 м), извержение которого повторяется приблизительно через каждые 7-8 лет. Активно дей­ствуют вулканы Авачинский, Карымский, Безымянский. На Кури­льских островах насчитывают до 20вулканов, из которых около половины действующих.

Потухшие вулканы на Кавказе - Казбек, Эльбрус, Арарат. Казбек, например, еще действовал в начале четвертичного перио­да. Его лавы во многих местах покрывают район Военно-Грузин­ской дороги.

В Сибири в пределах Витимского нагорья также обнаружены потухшие вулканы. Извержения вулканов происходят по-разному. Это в большой мере зависит от типа магмы, которая извергается. Кислая и сред­няя магмы, будучи очень вязкими, дают извержения со взрыва­ми, выбросом камней и пепла. Излияние магмы основного со­става обычно происходит спокойно, без взрывов. На Камчатке и Курильских островах извержения вулканов начинаются с подзем­ных толчков, далее следуют взрывы с выбросом водяных паров и излиянием раскаленной лавы.

Извержение, например, Ключевской сопки в 1944-1945 гг. сопровождалось образованием над кратером раскаленного конуса высотой до 1500 м, выбросом раскаленных газов и обломков по­род. После этого произошло излияние лавы. Извержение сопро­вождалось землетрясением в 5 баллов. При извержении вулканов типа Везувия характерно выпадение обильных дождей за счет конденсации водяных паров. Возникают исключительные по силе и грандиозности грязевые потоки, которые, устремляясь вниз по склонам, приносят огромные разрушения и опустошения. Так же может действовать вода, образовавшаяся в результате таяния сне­гов на вулканических склонах кратеров; и вода озер, сформиро­вавшихся на месте кратера.

Строительство зданий и сооружений в вулканических районах имеет определенные трудности. Землетрясения обычно не дости­гают разрушительной силы, но продукты, выделяемые вулканом, могут пагубно сказаться на целостности зданий и сооружений и их устойчивости. Многие газы, выделяемые при извержениях, например серни­стые, опасны для людей. Конденсация паров воды вызывает ка­тастрофические ливни и грязевые потоки. Лава образует потоки, ширина и длина которых зависят от уклона и рельефа местности. Известны случаи, когда длина лавового потока достигала 80 км (Исландия), а мощность - 10-50 м. Скорость течения основных лав составляет 30 км/ч, кислых - 5-7 км/ч, из вулканов взлета­ют вулканические пеплы (пылеватые частицы), песок, лапилли (частицы 1-3 см в диаметре), бомбы (от сантиметров до не­скольких метров). Все они представляют собой застывшую лаву и при извержении вулкана разлетаются на различные расстояния, засыпают поверхность земли многометровым слоем обломков, обрушивают кровли зданий.

Как вы уже знаете, большинство жителей города живут в трех основных типах домов: мелкоблочных, крупноблочных, крупнопанельных. Каркасно-панельные здания — это, как правило, общественные и административные. Попробуем представить ситуацию землетрясения для каждого из таких домов.

Итак, вы находитесь в мелкоблочном доме. Дефицит сейсмичности такого неукрепленного дома составляет 1,5-2 балла. Отметим только, что трещины во внутренних и наружных стенах могут быть от волосяных до 3-4 сантиметровых. Таких размеров трещины, сквозь которые была видна улица, комиссия специалистов наблюдала в подобных домах в г. Ленинакане после Спитакского землетрясения. Паниковать при виде таких нарушений не стоит, т. к. дом на это рассчитан. Следует быть особенно осторожными, если разрушения будут сильно отличаться от тех, которые мы описали. Например, произойдет сдвиг перекрытий со стен на 3 и более сантиметров. рис. 5 Какие же элементы дома лучше всего противостоят стихии?

Обратимся к рисунку 5, на котором изображена наиболее характерная планировка жилого 2-5-этажного мелкоблочного дома. Несущие (на которые опираются перекрытия) капитальные стены 1,2 повреждаются меньше, чем поперечные 3,4,5. Последние легче сдвинуть (срезать) горизонтальными сейсмическими силами, т. к. они менее пригружены. Особенно опасной считается торцевая стена 4, которая связана с остальными стенами только с одной стороны. Иногда торцы зданий даже отрываются от здания и вываливаются наружу, что неоднократно наблюдалось в поселке Газли, городах Спитаке и Нефтегорске. Очень опасен угол здания 6, который менее всего связан со зданием и наиболее подвержен «расшатыванию» при землетрясении. Уже при 7-8-балльном землетрясении углы зданий на верхнем этаже, как правило, повреждаются, а при 9-балльном могут вывалиться наружу. У наружных продольных стен (1) находиться при землетрясении не рекомендуется, так как здесь могут «выстреливать» стекла, вываливаться внутрь и наружу окна (это замечание верно не только для мелкоблочных домов), а у особо слабых домов даже отрываться (стены продольные от поперечных). Наиболее безопасными при землетрясении считаются места пересечений внутренних несущих продольных стен (2) с внутренними поперечными. На рисунке показаны наиболее характерные «островки безопасности»: у выходов из квартир на лестничную клетку и у межсекционной стены 5. В этих местах, за счет крестообразного пересечения несущих и ненесущих стен, создается ядро повышенной прочности, которое может выстоять даже при обрушении остальных стен. Это ядро тем прочнее, чем меньше в нем дверных проемов. Так, например, наиболее надежным будет место у правой трехкомнатной квартиры в зоне пересечения внутренних стен 2 и 5. Также надежным представляется островок в двухкомнатной квартире на пересечении глухих участков стен типа 3 и 2. Что касается однокомнатной и левой трехкомнатной квартир, то у них ядра имеют по одному- два проема и поэтому считаются менее прочными, чем ядра с глухими стенами. Поэтому, в случае необходимости, здесь можно перемещаться вдоль стены 2. В таких домах постройки 70-80 гг. дверные проемы, выходящие на лестничную клетку, обрамлены железобетонными рамками, что гарантирует их прочность. Однако в домах более ранней постройки рамки есть не везде, поэтому эти выходы нельзя считать полностью безопасными. Несколько общих советов по поведению. Как только начнется землетрясение, следует открыть двери, ведущие на лестничную площадку и перейти на островок безопасности. Стоит попытаться выбежать из здания, если вы находитесь на первом или втором этажах. С более высокого этажа вы можете не успеть это сделать до того, как начнутся серьезные разрушения. Выбегать из дома надо особенно быстро и внимательно, чтобы тебя не «накрыли» кирпичи, летящие с крыши от разрушенных труб, или не придавил тяжелый козырек. Если вы не успели на островок безопасности, то следует помнить, что очень опасны перегородки, сделанные из мелкоблочной кладки. Они разрушаются одними из первых, вплоть до обрушения. Менее опасны деревянные щитовые перегородки, но и от них могут отваливаться достаточно большие куски штукатурки, которые особенно опасны для маленьких детей. Каменную перегородку от щитовой легко отличить по глухому, очень короткому, невибрирующему звуку при ударе по стене кулаком. При расстановке мебели в квартире обратите внимание на то, чтобы громоздкая мебель не могла упасть на территорию островка безопасности или на путь возможной эвакуации из квартиры.

Многие жители крупноблочных домов знают, что их дома достаточно хорошо выдерживают землетрясение. Их реальная сейсмостойкость оценивается специалистами в 7,7 баллов.

На рис. 6 изображена типовая планировка крупноблочного дома. Положение капитальных несущих и ненесущих стен — такое же, как и в мелкоблочном доме. Крупноблочный дом теряет свою несущую способность главным образом за счет расслоения стен на отдельные блоки, которые в домах старой постройки, к сожалению, не имеют хорошей связи друг с другом. Наружные стены состоят по высоте этажа из двух блоков: простеночного высотой 2,2 м и перемычного высотой 0,6 м. Внутренние стены состоят из блоков высотой в этаж, т. е. 2,8 м. Железобетонные перекрытия толщиной 0,22 м опираются на перемычные блоки наружных стен и непосредственно на блоки внутренних стен. При землетрясении силой более 7 баллов блоки начинают смещаться из плоскости стены. Наибольшие трещины и разрушения стыков (11) следует ожидать в менее пригруженных плитами ненесущих поперечных стенах, особенно в торцевой стене (4) и стенах лестничной клетки (3). В последних стенах есть небольшая связь блоков друг с другом с помощью не очень прочных металлических пластин, которые уже при землетрясении 7,5-8 баллов начнут сильно расшатываться, откалывая вокруг себя куски бетона и штукатурки. Эти обломки могут травмировать бегущих по лестнице людей, поэтому передвигаться необходимо, прижимаясь ближе к перилам. рис. 6. Как и в мелкоблочных зданиях, очень опасны углы здания (6), особенно на верхних этажах. Сдвиг блоков из плоскости стены может привести к частичному обрушению торцевой стены (4) и плит перекрытия. Перегородки в этих домах, как правило, деревянные, щитовые, оштукатуренные, и их обрушения бояться не следует. Травму, особенно маленькому ребенку, могут нанести отваливающиеся от перегородок куски штукатурки и куски цементного раствора, выпадающие из швов между плитами перекрытия. Такие повреждения наступают при землетрясении 7,5 баллов. На рисунке отмечены наиболее безопасные места в крупноблочном доме. В отличие от мелкоблочных зданий, здесь все двери выходов на лестничную площадку усилены железобетонными рамами (9), поэтому вероятность заклинивания дверей от перекоса невысокая и выход из квартиры достаточно надежен. К общему совету — не вешать в районе островка безопасности тяжелые полки и закрепить мебель, следует добавить, что это особенно важно сделать в чулане-кладовой (7) и в коридоре (8), иначе на островке безопасности для вас просто не останется места.

В старых крупнопанельных пятиэтажных жилых домах, типовая планировка которых представлена на рис. 7, площадь островков безопасности уже значительно больше. Несмотря на то, что эти дома проектировались на 7-8 баллов, практика показала, что их реальная сейсмостойкость близка к 9 баллам. Ни одно такое здание нигде во время землетрясений на территории бывшего Советского Союза не было разрушено. Все наружные и внутренние стены в таких домах — железобетонные крупные панели, хорошо связанные в узлах с помощью замоноличивания и сварки (узел 5). Внутренние стены и перегородки связаны друг с другом на сварных выпусках. Панели перекрытия размером с комнату, опираются на стены по четырем сторонам и связаны со стенами также сваркой. Получается надежная сотовая конструкция. Расчеты поведения крупнопанельного дома при 9-балльном землетрясении, показали, что наибольшие повреждения ожидаются в углах здания (6), и в узлах сопряжения торцевых панелей (4), где могут раскрыться большие вертикальные трещины в 1-2 см. Первые трещины могут появиться уже при Л-7,5 баллах. Такие же трещины могут появиться у деформационных швов между зданиями. Но эти трещины не влияют на общую устойчивость здания. К неприятным факторам можно отнести возможное появление наклонных трещин шириной до 1 см в железобетонных перемычках над входными дверями в квартиры, что может привести к заклиниванию дверей. Поэтому их необходимо закрывать сразу же при начале колебаний силой в 6 баллов и более. Поскольку крупнопанельные здания достаточно надежны, то выбегать из них при землетрясении не следует. Но держаться во время землетрясения рекомендуется в зоне островков безопасности, подальше от наружных стен, где возможны «выстреливания» оконных стекол, и от торцевой стены, в узлах которой возможно раскрытие протяженных пугающих трещин. Выбегать не следует еще и потому, что в старых домах этой серии стоят очень тяжелые опасные козырьки над входами в подъезды. Закладные металлические детали, с помощью которых эти козырьки крепились к зданию. в связи со старением сильно проржавели и могут не удержать их при сильных сейсмических толчках.

Во время землетрясения на о. Шикотане в 1994 году у аналогичных крупнопанельных трехэтажных домов упало несколько козырьков, которые придавили двух жильцов, выбегавших из одного дома. При этом ни один человек, остававшийся в доме, не пострадал. Сам дом ни получил серьезных повреждений. Более поздние крупнопанельные дома, так называемой «усовершенствованной» серии, с эркерами, а также дома «новой» планировки с большими застекленными балконами изначально рассчитаны на 9 баллов и находиться в них при землетрясении такой силы практически безопасно. Остерегаться нужно падающих сверху, прежде всего с балконов, разбитых стекол, которые могут разлетаться на большие расстояния — до 15 метров. Поэтому из этих домов не рекомендуется выбегать, так же, как находиться на улице рядом с ними. рис.7 Опыт показывает, что даже при сильных 8-9-балльных землетрясениях 1-2-этажные деревянные дома практически не разрушаются до обвала. Один из авторов книги , наблюдал за поведением щитовых и брусчатых домов при 9-балльном землетрясении на о. Шикотане. Из обследованных почти пятидесяти двухэтажных домов не было ни одного дома, где обрушилась бы хотя бы одна стена или провалилось перекрытие. Были случаи, когда фундамент «вырывался» из-под дома и увлекался оползнем на 1-1,5 метра, а дом, прогнувшись, стоял! Были разрывы стен в углах до 20 см и проседания грунта под зданием до 0,5 м, а дома выстояли. Поэтому никуда из таких домов выбегать не следует, тем более, что опасность представляют падающие на выбегающих кирпичи от разрушающихся печных труб. В деревянных домах сильней других раскачиваются перекрытия и «трещат» стены, что вызывает неприятные ощущения. Могут вывалиться куски штукатурки из стен и с потолка. Поэтому в таких домах имеет смысл выбрать место, где штукатурка плотно прилегает к стене, перекрытию, т. е. заранее «не бухтит» при постукивании. Детям лучше спрятаться под столом. И, конечно, необходимо находиться подальше от наружных стен с окнами, от тяжелых шкафов и полок, в особенности, если они специально не закреплены. Это является общим правилом для любых зданий.

Домашний тренинг. Давайте проведем мысленный эксперимент. Закройте глаза и вообразите, что вылежите на собственной кровати. Представьте, что в данный момент произошел первый сильный сейсмический толчок. Теперь мысленно постарайтесь как можно быстрее добраться до двери, открыть ее и занять место в дверном проеме. Одновременно загибайте пальцы на руке в каждом случае, когда при вашем мысленном продвижении вы натыкаетесь на препятствия, реально существующие. А теперь посчитайте. Каждое препятствие — это минимум 3 потерянных секунды. Оцените время чистого движения и время открывания дверного замка. Прибавьте секунды на то, чтобы прихватить рюкзачок с документами и продуктами (несомненно, он, как и рекомендовано, висит рядом с дверью). И если у вас получится больше 20 секунд, то поставьте себе жирный НЕУД, и давайте займемся реорганизацией. Составьте список обнаруженных при эксперименте препятствий. Это тот минимум, который предстоит сделать. Начнем движение в обратном порядке. Оцените дверной замок с точки зрения возможности быстрого открытия двери. Легко ли вы даже в темноте находите сам замок и устройство его открывания? Сколько действий требуется для отпирания замка и двери? Постарайтесь устроить все таким образом, чтобы замок открывался при минимуме движений, и доведите эти движения до автоматизма.. Осмотрите пространство около входной двери. Находятся ли рядом предметы, которые при первом же толчке могут упасть и перегородить вам путь? Если таковые есть, либо укрепите их, либо определите им более подходящее место в квартире. Коридор должен быть максимально свободным. Очень часто проход загромождают вещи, только недавно принесенные в квартиру и еще не обретшие своего постоянного места. Каждый знает, что нет ничего более постоянного, чем временное. Поэтому, не откладывая «на потом», расчистите себе путь к спасению. Обратите внимание на то, чтобы вдоль стен не находились предметы, за которые можно зацепиться. Посмотрите под ноги, убрана ли не используемая сейчас обувь из коридора и не создает ли она препятствий для движения. Теперь обратим внимание на дверь из коридора в комнату. Желательно, чтобы она находилась постоянно открытой. Подумайте, как можно зафиксировать ее в открытом положении, и оборудуйте фиксатор. Если на полу расстелено ковровое покрытие или имеются дорожки, то проверьте, насколько плотно они прилегают к полу, нет ли сборок, складок, задиров. Не проскальзывает ли дорожка по основному покрытию пола. Особое внимание обратите на места стыков ковровых покрытий и дорожек. Устраните все изъяны, пусть путь будет «шелковым». В последние годы в наш быт прочно вошли мобильные элементы интерьера: столики на колесиках, передвижные тумбы под телевизор, видео-аудиотехнику. Возьмите за правило не оставлять их вечером на возможном пути эвакуации. Оставляйте их в таком положении, чтобы их самопроизвольное движение в случае сейсмических толчков не могло происходить в направлении этого пути эвакуации и не вызывало бы падение предметов или мебели на этот путь. Если для подключения электроаппаратуры вы используете удлинители, то сделайте так, чтобы провода не пересекали путь вашего движения к выходу. Гордость почти каждой семьи — домашняя библиотека. Проверьте, не стоят ли книги на открытых полках, из которых они могут при первом же сейсмическом толчке выпасть вам под ноги или свалиться на голову, когда вы побежите к двери. Оцените с тех же позиций предметы, стоящие на открытых полках, особенно, если эти полки находятся над дверями. Убедитесь, что сами полки закреплены надежно. Прикроватные тумбочки должны быть также надежно закреплены, чтобы не явиться первым непреодолимым барьером на пути к спасению. Желательно закрепить настольные светильники, стоящие на этих тумбах. Если ящики в этих тумбочках легко вываливаются или раскрываются при несильных воздействиях дверцы, то позаботьтесь о том, чтобы они были надежно зафиксированы. Серьезным препятствием для быстрого движения может оказаться периодически накапливающаяся рядом с постелью одежда. Возьмите за правило убирать на место вещи, которые вы в этот день носить не будете. (Оказывается, возможное сильное землетрясение — немаловажная причина поддерживать в доме порядок!)

Вспомните еще раз проведенный мысленный эксперимент и обратите внимание на то, какое препятствие первым возникло на вашем пути. Если оно устранено, то проверьте, остались ли в вашем послеэкспериментном списке неустраненные барьеры и примите соответствующие меры. Проверьте теперь путь к выходу для каждого члена семьи. Если в семье есть маленькие дети и вы сначала будете двигаться к ним, то обратите внимание на те участки, которые вы вынуждены будете пересекать дважды в разном направлении. Выясните, не создадите ли вы своим первым движением препятствия для обратного пути. Аналогичным образом обследуйте и приведите в порядок путь эвакуации из гостиной и кухни. Учтите, что из этих помещений могут одновременно двигаться несколько человек, включая детей. Когда смотришь соревнования по легкой атлетике, то, наблюдая забег по стипль-чезу, часто возникает желание облегчить путь спортсменам и убрать препятствия и яму с водой. Как легко и красиво они добрались бы до финиша. Но там правила игры не позволяют это сделать. Правила же сейсмобезопасности, наоборот, говорят нам — не доводите дело до домашнего стипль-чеза, иначе добраться благополучно до финиша не получится. Поэтому мы советуем убрать барьеры с дороги и не рисковать понапрасну.

Отрывок из работы В.Н. Андреева, В.Н. Медведева «ПРОБЛЕМЫ СЕЙСМИЧЕСКОГО РИСКА В РЕСПУБЛИКЕ САХА (ЯКУТИЯ)» без авторских иллюстраций.

Дома-убийцы на карте катастроф

Тревожную тенденцию выявили новейшие Карты общего сейсмического районирования территории Российской Федерации: по сравнению с предыдущими расчетами количество регионов с повышенной сейсмической опасностью значительно увеличилось.

Планета продолжает показывать свой буйный характер. С удивительным постоянством происходят на ней землетрясения. Только за две недели их было 15 — в Турции и в Мексике, на Сахалине и Камчатке, в Лос-Анджелесе и на Аляске, на Кавказе и на Тайване, в Ионическом море и в Японии. К счастью, на этот раз подземные толчки были не самые сильные — их максимальная интенсивность не превысила 6,2 балла, но и они привели к разрушениям и гибели людей. А ведь сильное землетрясение может стать экономической и социальной катастрофой для целой страны, достаточно вспомнить трагедию в Индии 26 января прошлого года.
В последние десятилетия опасность сейсмических катастроф резко возросла, что в первую очередь связано с хозяйственной деятельностью человека, техногенными воздействиями на земную кору — созданием водохранилищ, добычей нефти, газа, твердых полезных ископаемых, закачкой жидких промышленных отходов и целого ряда других факторов. А возможные при этом разрушения построенных на поверхности крупных инженерных сооружений (атомные станции, химические комбинаты, высотные плотины и т. п.) могут привести к экологическим катастрофам. Пример такой потенциальной опасности — Балаковская АЭС, которая выдержит землетрясение не сильнее 6 баллов, при том, что Саратовская область сегодня отнесена к зоне семибалльной сейсмичности.
Практически ни один сильный подземный толчок не проходит бесследно: после каждого ожидаемая сейсмическая опасность в пострадавшем и примыкающих к нему регионах повышается. Скажем, землетрясение в Нефтегорске 1995 года было оценено специалистами как 9-10-балльное. А ведь еще в 60-х годах эта и прилегающие территории вообще не считались сейсмически опасными, и при проектировании зданий возможность землетрясений не учитывалась. Такие же заниженные прогнозы сейсмической активности были допущены в Японии, Китае, Греции и других странах. Не исключены, к сожалению, подобные ошибки и в будущем.
Так что печальный перечень регионов, где земля может вдруг встать дыбом, непрерывно растет. Последние Карты общего сейсмического районирования территории Российской Федерации это наглядно демонстрируют. Еще недавно наиболее сейсмоопасными считались два региона России — Сахалин, Камчатка, Курилы и другие районы Дальнего Востока, а также территории Восточной Сибири, примыкающие к Прибайкалью и Забайкалью, включая горный Алтай. Там возможны катастрофические землетрясения интенсивностью 9 и более баллов (по шкале Рихтера — до 8,5). Кстати, территория Сахалинской области — из числа самых сейсмоопасных не только в России, но и в мире.
Теперь на последних картах угроза землетрясений в 9 и более баллов распространилась и на значительную часть Северного Кавказа, где проживают около 7 млн. человек. И это при том, что строительство жилых домов и промышленных зданий до недавнего времени осуществлялось здесь с учетом сейсмичности в 7 баллов. Наибольшие опасения вызывает Краснодарский край с пятимиллионным населением. В летние месяцы на узкой полоске Черноморского побережья количество людей многократно увеличивается.
Еще одно очень важное отличие новых карт в том, что на них впервые появились зоны 10-балльных землетрясений. Они расположены на Сахалине, Камчатке и Алтае. Раньше таких районов в нашей стране не значилось.
Но точное место, силу и время землетрясения предсказать невозможно. Нет способов и предотвратить катаклизм. Основная задача — свести к минимуму разрушения и человеческие жертвы. Последние сильные землетрясения в Нефтегорске (1995 г.), в Турции и на Тайване (1999 г.) показали: необходимы принципиально новые подходы в нормировании и проектировании инженерных сооружений.

А пока специалисты приходят к шокирующим результатам: главными «убийцами» людей при землетрясениях оказываются здания двух типов. Причем наиболее распространенных. Прежде всего — дома со стенами из малопрочных материалов. Второй тип — железобетонные каркасные здания, массовое разрушение которых оказалось совершенно неожиданным, поскольку еще недавно они по сейсмостойкости были на одном из первых мест. Так, во время землетрясения в Ленинакане 98 процентов железобетонных каркасных домов сложились как гармошка, в них погибло более 10 тысяч человек.

В отличие от каркасных очень хорошо себя зарекомендовали крупнопанельные здания и дома со стенами из монолитного железобетона, обладающие максимальной жесткостью во всех направлениях.
Разумеется, кардинальное решение создавшейся ситуации: снесение всех опасных домов и строительство на их месте новых сегодня нереально. Поэтому самая сложная и неотложная задача — усиление зданий, построенных без учета возможных сейсмических воздействий или рассчитанных на незначительные землетрясения. К сожалению, в России эта проблема стоит чрезвычайно остро. Недаром в Федеральной целевой программе «Сейсмобезопасность территории России», начавшей действовать в этом году, есть страшная фраза: «За всю историю СССР и Российской Федерации в стране не были реализованы общегосударственные программы по сейсмической безопасности, в результате чего десятки миллионов человек на сейсмоопасных территориях живут в домах, характеризующихся дефицитом сейсмостойкости в 2-3 балла». При этом в ряде субъектов Российской Федерации, даже по приближенным оценкам, от 60 до 90 процентов зданий и других сооружений должны быть отнесены к несейсмостойким.
По данным Программы, более половины территории России может пострадать от землетрясений средней балльности, которые способны привести к тяжелейшим последствиям в густонаселенных местностях, а «около 25 процентов территории Российской Федерации с населением более 20 млн. человек может подвергаться землетрясениям в 7 баллов и выше.
Именно с учетом высокой сейсмической опасности, плотности населения, степени фактической сейсмической уязвимости застройки субъекты Российской Федерации были классифицированы в зависимости от индекса сейсмического риска и подразделены на 2 группы.
В первую группу (см. таблицу) были включены 11 субъектов Российской Федерации — регионы наиболее высокого сейсмического риска. Многие города и крупные населенные пункты этих регионов расположены на территориях с сейсмичностью 9 и 10 баллов.
Во вторую группу попали Алтайский, Красноярский, Приморский, Ставропольский и Хабаровский края, Амурская, Кемеровская, Магаданская, Читинская области, Еврейская автономная область, Усть-Ордынский Бурятский, Чукотский и Корякский автономные округа, республики Саха (Якутия), Адыгея, Хакасия, Алтай и Чеченская Республика. В этих регионах прогнозируемая сейсмическая активность 7-8 баллов и ниже.
Москва и Московская область, по данным Российской академии наук, не являются сейсмически опасным районом. Максимально возможные колебания здесь не превысят 5 баллов.

Александр Колотилкин

Зона повышенного риска

Регион Индекс сейсмического риска * Крупные города (кол-во объектов, требующих первоочередного усиления)
Краснодарский край 9 Новороссийск, Туапсе, Сочи, Анапа, Геленджик (1600)
Камчатская область 8 Петропавловск-Камчатский, Елизово, Ключи (270)
Сахалинская область 8 Южно-Сахалинск, Невельск, Углегорск, Курильск, Александровск-Сахалинский, Холмск, Поронайск, Красногорск, Оха, Макаров, Северо-Курильск, Чехов (460).
Республика Дагестан 7 Махачкала, Буйнакск, Дербент, Кизляр, Хасавюрт, Дагестанские Огни, Избербаш, Каспийск (690)
Республика Бурятия 5 Улан-Удэ, Северобайкальск, Бабушкин (485)
Республика Северная Осетия — Алания 3,5 Владикавказ, Алагир, Ардон, Дигора, Беслан (400)
Иркутская область 2,5 Иркутск, Шелехов, Тулун, Усолье-Сибирское, Черемхово, Ангарск, Слюдянка (860)
Кабардино-Балкарская Республика 2 Нальчик, Прохладный, Терек, Нарткала, Тырныауз (330)
Ингушская Республика 1,8 Назрань, Малгобек, Карабулак (125)
Карачаево-Черкесская Республика 1,8 Черкесск, Теберда (20)
Республика Тыва 1,8 Кызыл, Ак-Довурак, Чадан, Шагонар (145)

_______
*Индекс сейсмического риска характеризует необходимый объем антисейсмических усилений, учитывает сейсмическую опасность, сейсмический риск и численность населения в крупных населенных пунктах.

Ежедневно различные районы нашей планеты сотрясаются подземными толчками. Землетрясение — это одно из стихийных бедствий, предотвратить которые человеку не под силу.

Единственное, что он может противопоставить неукротимым силам природы - это достижения науки в области прогнозирования. Систематизация и мониторинг сейсмической активности позволяет вовремя избежать человеческих жертв и разрушений, а также обозначить районы наибольшей сейсмической активности.

Учет очагов землетрясений

Карта сейсмической активности Земли представляет собой физическую карту планеты, на которой отображены области, где за определенный период времени происходили землетрясения мощностью более 4 баллов по шкале Рихтера. На карте используются следующие условные обозначения: диаметр области пропорционален мощности подземных толчков, а цвет окружности обозначает временной интервал. Так, например, красные области соответствуют землетрясениям, происходящим в текущую дату или в реальном времени.

Сейсмический монитор, обновление происходит каждые 20 минут


красные кружки — землетрясения за последние 24 часа
оранжевые кружки — землетрясения за последние 1-4 дня
желтые кружки — землетрясения за последние 4-14 дней

Данные сервиса EMSC и Google Map

Карта сейсмической активности мира позволяет нажатием кнопки мыши выбрать участок земной поверхности. При этом в окне отдельно отобразится выбранная область, на которой подробно указываются эпицентры землетрясений. Сейсмический монитор онлайн позволяет при выборе любого из очагов получить исчерпывающие данные. В таблице приводятся координаты эпицентров и мощность подземных толчков, начиная от 24 часов и до 30 дней. Также на карте области отображаются находящиеся в выбранном участке станции сейсмофиксации.

Список землетрясений

Для возвращения к началу документа нажмите клавишу Backspace или Back to the earthquake list

Карта сейсмической активности онлайн, обновляется каждые 20 минут. Кроме того вы всегда можете узнать было ли сегодня землетрясение или нет. Это позволяет более наглядно оценивать предоставленную информацию.

Карта землетрясений по версии сервиса Google

Сейсмическая активность Земли

Представленные ниже изображения представлены некоммерческой организацией IRIS, которая основана в 1984 году при поддержке Национального научного фонда и представляет собой консорциум из более чем 100 университетов США, работа которых посвящена изучению, систематизации и распределению данных по сейсмологии. Программы IRIS направлены на научные исследования, образование, снижение последствий землетрясений.

На представленных ниже данных, время указано UTС (Всемирное координированное время), для перевода в Московское, прибавьте 4 часа.

Шкала сейсмоактивности. Шкала Рихтера. Землетрясение по видам активности.

Шкала Меркалли Шкала Рихтера Видимое действие

1

0 -4.3

Вибрацию от землетрясения регистрируют только приборы

2

Колебания землетрясения ощущаются при стоянии на лестнице

3

Толчки от землетресения ощущаются в закрытых помещениях, легкие колебания предметов

4

4.3-4.8

Звон посуды, качание деревьев, толчки землетрясения ощущаются в стоящих автомобилях

5

Скрип дверей, пробуждение спящих, переливание жидкости из сосудов

6

4.8-6.2

При землетрясении неустойчивая ходьба людей, повреждения окон, падение картин со стен

7

Трудно стоять, осыпается плитка на домах, от землетрясения большие колокола звенят

8

6.2-7.3

Повреждение дымоходов, повреждение канализационных сетей при таком землетрясении

9

Всеобщая паника от землетрясения, повреждения фундаментов

10

Большинство строений повреждены*, крупные оползни, реки выходят из берегов

11

7.3-8.9

Изгиб ж/д путей, повреждения дорог, большие трещины в земле, падение камней

12

Полные разрушения, волны на поверхности земли, изменения в течении рек, плохая видимость
* Специально сконструированные здания с защитой от землетрясений способны выдержать толчки до 8.5 баллов по шкале Рихтера

Текущая сейсмика Атлантического океана


На данной карте показаны Тихий океан, а также восточные регионы России — Дальний Восток и Курилы. Хорошо заметна линия разлома тихоокеанской гряды.


Сейсмическая активность в России и Центральной Азии


Карта сейсмической активности России и Европы

Вверх