Каноническая квадратичная форма. Канонический вид квадратичной формы. Приведение квадратичной формы к каноническому виду

Данный метод состоит в последовательном выделении в квадратичной форме полных квадратов.

Пусть дана квадратичная форма

Напомним, что, ввиду симметричности матрицы

,

Возможны два случая:

1. Хотя бы один из коэффициентовпри квадратах отличен от нуля. Не нарушая общности, будем считать(этого всегда можно добиться соответствующей перенумерацией переменных);

2. Все коэффициенты,

но есть коэффициент , отличный от нуля (для определённости пусть будет).

В первом случае преобразуем квадратичную форму следующим образом:

,

а через обозначены все остальные слагаемые.

представляет собой квадратичную форму от (n-1) переменных .

С ней поступают аналогичным образом и так далее.

Заметим, что

Второй случай заменой переменных

сводится к первому.

Пример 1:Квадратичную форму привести к каноническому виду посредством невырожденного линейного преобразования.

Решение. Соберём все слагаемые, содержащие неизвестное , и дополним их до полного квадрата

.

(Так как .)

или

(3)

или


(4)

и от неизвестных
формапримет вид. Далее полагаем

или

и от неизвестных
формапримет уже канонический вид

Разрешим равенства (3) относительно
:

или

Последовательное выполнение линейных преобразований
и
, где

,

имеет матрицей

Линейное преобразование неизвестных
приводит квадратичную форму к каноническому виду (4). Переменные
связаны с новыми переменными
соотношениями

С LU - разложением мы познакомились в практикуме 2_1

Вспомним утверждения из практикума 2_1

Утверждения (см.Л.5, стр. 176)


Данный скрипт призван понять роль LU в методе Лагранжа, с ним нужно работать в блокноте EDITOR с помощью кнопки F9.

А в прилагаемых ниже заданиях лучше создать свои М-функции, помогающие вычислению и осознанию задач линейной алгебры (в рамках данной работы)

Ax=X."*A*X % получаем квадратичную форму

Ax=simple(Ax) % упрощаем ее

4*x1^2 - 4*x1*x2 + 4*x1*x3 + x2^2 - 3*x2*x3 + x3^2

% найдем LU разложение без перестановки строк матрицы A

% При преобразовании матрицы к ступенчатому виду

%без перестановок строк, мы получим матрицу M1 и U3

% U получается из A U3=M1*A,

% вот такой матрицей элементарных преобразований

0.5000 1.0000 0

0.5000 0 1.0000

%мы получим U3=M1*A, где

4.0000 -2.0000 2.0000

% из M1 легко получить L1, поменяв знаки

% в первом столбце во всех строках кроме первой.

0.5000 1.0000 0

0.5000 0 1.0000

% L1 такое, что

A_=L1*U % вот это и есть нужное нам LU разложение

% Элементы, стоящие на главной диагонали U -

% это коэффициенты при квадратах y i ^2

% в преобразованной квадратичной форме

% в нашем случае, есть один только коэффициент

% значит, в новых координатах будет только 4y 1 2 в квадрате,

% при остальных 0y 2 2 и 0y 3 2 коэффициенты равны нулю

% столбцы матрицы L1 - это разложение Y по X

% по первому столбцу видим y1=x1-0.5x2+0.5x3

% по второму видим y2=x2; по третьему y3=x3.

% если транспонировать L1,

% то есть T=L1."

% T - матрица перехода от {X} к {Y}: Y=TX

0.5000 1.0000 0

1.0000 -0.5000 0.5000

% A2 – матрица преобразованной квадратичной формы

% Заметим U=A2*L1." и A=L1* A2*L1."

4.0000 -2.0000 2.0000

1.0000 -0.5000 0.5000

% Итак, мы получили разложение A_=L1* A2*L1." или A_=T."* A2*T

% показывающее замену переменных

% y1=x1-0.5x2+0.5x3

% и представление квадратичной формы в новых координатах

A_=T."*A2*T % T=L1." матрица перехода от {X} к {Y}: Y=TX

isequal(A,A_) % должно совпасть с исходной A

4.0000 -2.0000 2.0000

2.0000 1.0000 -1.5000

2.0000 -1.5000 1.0000

Q1=inv(T) % находим матрицу перехода от {Y} к {X}

% Найдем преобразование,

% приводящее квадратичную форму Ax=X."*A*X

% к новому виду Ay=(Q1Y)."*A*Q1Y=Y." (Q1."*A*Q1)*Y=Y." (U)*Y

Ay =4*y1^2 - y2*y3

x1 - x2/2 + x3/2

% матрица второго преобразования,

% которая составляется значительно проще.

4*z1^2 - z2^2 + z3^2

% R=Q1*Q2, X=R*Z

R=Q1*Q2 % невырожденное линейное преобразование

% приводящее матрицу оператора к каноническому виду.

det(R) % определитель не равен нулю - преобразование невырожденное

4*z1^2 - z2^2 + z3^2 ok

4*z1^2 - z2^2 + z3^2


Сформулируем алгоритм приведения квад ратичной формы к каноническому виду ортогональным преобразованием:


Квадратичная форма называется канонической, если все т. е.

Всякую квадратичную форму можно привести к каноническому виду с помощью линейных преобразований. На практике обычно применяют следующие способы.

1. Ортогональное преобразование пространства :

где - собственные значения матрицы A .

2. Метод Лагранжа - последовательное выделение полных квадратов. Например, если

Затем подобную процедуру проделывают с квадратичной формой и т. д. Если в квадратичной форме все но есть то после предварительного преобразования дело сводится к рассмотренной процедуре. Так, если, например, то полагаем

3. Метод Якоби (в случае, когда все главные миноры квадратичной формы отличны от нуля):

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Векторa называется направляющим вектором прямой .

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой впроекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называетсяуравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая может принадлежать и не принадлежать плоскости. Она принадлежит плоскости, если хотя бы две точки ее лежат на плоскости.

Если прямая не принадлежит плоскости, она может быть параллельной ей или пересекать ее.

Прямая параллельна плоскости, если она параллельна другой прямой, лежащей в этой плоскости.

Прямая может пересекать плоскость под различными углами и, в частности, быть перпендикулярной ей.

Точка по отношению к плоскости может быть расположена следующим образом: принадлежать или не принадлежать ей. Точка принадлежит плоскости, если она расположена на прямой, расположенной в этой плоскости.

В пространстве две прямые могут либо пересекаться, либо быть параллельными, либо быть скрещенными.

Параллельность отрезков прямых сохраняется в проекциях.

Если прямые пересекаются, то точки пересечения их одноимённых проекций находятся на одной линии связи.

Скрещивающиеся прямые не принадлежат одной плоскости, т.е. не пересекаются и не параллельны.

на чертеже одноименные проекции прямых, взятые отдельно, имеют признаки пересекающихся или параллельных прямых.

Эллипс. Эллипсом называется геометрическое место точек, для которых сумма расстояний до двух фиксированных точек (фокусов) есть для всех точек эллипса одна и та же постоянная величина (эта постоянная величина должна быть больше, чем расстояние между фокусами).

Простейшее уравнение эллипса

где a - большая полуось эллипса, b - малая полуось эллипса. Если 2c - расстояние между фокусами, то между a , b и c (если a > b ) существует соотношение

a 2 - b 2 = c 2 .

Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси

У эллипса эксцентриситет e < 1 (так как c < a ), а его фокусы лежат на большой оси.

Уравнение гиперболы, изображенной на рисунке .

Параметры:
a, b – полуоси;
- расстояние между фокусами,
- эксцентриситет;
- асимптоты;
- директрисы.
Прямоугольник, изображенный в центре рисунка – основной прямоугольник, его диагонали есть асимптоты.

определяет на плоскости кривую. Группа членов называется квадратичной формой, – линейной формой. Если в квадратичной форме содержатся только квадраты переменных, то такой ее вид называется каноническим, а векторы ортонормированного базиса, в котором квадратичная форма имеет канонический вид, называются главными осями квадратичной формы.
Матрица называется матрицей квадратичной формы. Здесь a 1 2 =a 2 1 . Чтобы матрицу B привести к диагональному виду, необходимо за базис взять собственные векторы этой матрицы, тогда , где λ 1 и λ 2 – собственные числа матрицы B.
В базисе из собственных векторов матрицы B квадратичная форма будет иметь канонический вид: λ 1 x 2 1 +λ 2 y 2 1 .
Эта операция соответствует повороту осей координат. Затем производится сдвиг начала координат, избавляясь тем самым от линейной формы.
Канонический вид кривой второго порядка: λ 1 x 2 2 +λ 2 y 2 2 =a , причем:
а) если λ 1 >0; λ 2 >0 – эллипс, в частности, при λ 1 =λ 2 это окружность;
б) если λ 1 >0, λ 2 <0 (λ 1 <0, λ 2 >0) имеем гиперболу;
в) если λ 1 =0 либо λ 2 =0, то кривая является параболой и после поворота осей координат имеет вид λ 1 x 2 1 =ax 1 +by 1 +c (здесь λ 2 =0). Дополняя до полного квадрата, будем иметь: λ 1 x 2 2 =b 1 y 2 .

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение . Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ 1 =-2, λ 2 =8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x 1 2 -2y 1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x 1 =1: x 1 =(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1 .
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
1 ,j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

; . (*)


Вносим выражения x и y в исходное уравнение и, после преобразований, получаем: .
Выделяем полные квадраты : .
Проводим параллельный перенос осей координат в новое начало: , .
Если внести эти соотношения в (*) и разрешить эти равенства относительно x 2 и y 2 , то получим: , . В системе координат (0*, i 1 , j 1) данное уравнение имеет вид: .
Для построения кривой строим в старой системе координат новую: ось x 2 =0 задается в старой системе координат уравнением x-y-3=0, а ось y 2 =0 уравнением x+y-1=0. Начало новой системы координат 0 * (2,-1) является точкой пересечения этих прямых.
Для упрощения восприятия разобьем процесс построения графика на 2 этапа:
1. Переход к системе координат с осями x 2 =0, y 2 =0, заданными в старой системе координат уравнениями x-y-3=0 и x+y-1=0 соответственно.

2. Построение в полученной системе координат графика функции.

Окончательный вариант графика выглядит следующим образом (см. Решение :Скачать решение

Задание . Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение .

Определение 10.4. Каноническим видом квадратичной формы (10.1) называется следующий вид: . (10.4)

Покажем, что в базисе из собственных векторов квадратичная форма (10.1) примет канонический вид. Пусть

- нормированные собственные векторы, соответствующие собственным числам λ 1 ,λ 2 ,λ 3 матрицы (10.3) в ортонормированном базисе . Тогда матрицей перехода от старого базиса к новому будет матрица

. В новом базисе матрица А примет диагональный вид (9.7) (по свойству собственных векторов). Таким образом, преобразовав координаты по формулам:

,

получим в новом базисе канонический вид квадратичной формы с коэффициентами, равными собственным числам λ 1 , λ 2 , λ 3 :

Замечание 1. С геометрической точки зрения рассмотренное преобразование координат представляет собой поворот координатной системы, совмещающий старые оси координат с новыми.

Замечание 2. Если какие-либо собственные числа матрицы (10.3) совпадают, к соответствующим им ортонормированным собственным векторам можно добавить единичный вектор, ортогональный каждому из них, и построить таким образом базис, в котором квадратичная форма примет канонический вид.

Приведем к каноническому виду квадратичную форму

x ² + 5y ² + z ² + 2xy + 6xz + 2yz .

Ее матрица имеет вид В примере, рассмотренном в лекции 9, найдены собственные числа и ортонормированные собственные векторы этой матрицы:

Составим матрицу перехода к базису из этих векторов:

(порядок векторов изменен, чтобы они образовали правую тройку). Преобразуем координаты по формулам:

.


Итак, квадратичная форма приведена к каноническому виду с коэффициентами, равными собственным числам матрицы квадратичной формы.

Лекция 11.

Кривые второго порядка. Эллипс, гипербола и парабола, их свойства и канонические уравнения. Приведение уравнения второго порядка к каноническому виду.

Определение 11.1. Кривыми второго порядка на плоскости называются линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Если такая плоскость пересекает все образующие одной полости конуса, то в сечении получается эллипс , при пересечении образующих обеих полостей – гипербола , а если секущая плоскость параллельна какой-либо образующей, то сечением конуса является парабола .

Замечание. Все кривые второго порядка задаются уравнениями второй степени от двух переменных.

Эллипс.

Определение 11.2. Эллипсом называется множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F фокусами , есть величина постоянная.

Замечание. При совпадении точек F 1 и F 2 эллипс превращается в окружность.

Выведем уравнение эллипса, выбрав декартову систему

у М(х,у) координат так, чтобы ось Ох совпала с прямой F 1 F 2 , начало

r 1 r 2 координат – с серединой отрезка F 1 F 2 . Пусть длина этого

отрезка равна 2с , тогда в выбранной системе координат

F 1 O F 2 x F 1 (-c , 0), F 2 (c , 0). Пусть точка М(х, у ) лежит на эллипсе, и

сумма расстояний от нее до F 1 и F 2 равна 2а .

Тогда r 1 + r 2 = 2a , но ,

поэтому Введя обозначение b ² = a ²-c ² и проведя несложные алгебраические преобразования, получимканоническое уравнение эллипса : (11.1)

Определение 11.3. Эксцентриситетом эллипса называется величина е=с/а (11.2)

Определение 11.4. Директрисой D i эллипса, отвечающей фокусу F i F i относительно оси Оу перпендикулярно оси Ох на расстоянии а/е от начала координат.

Замечание. При ином выборе системы координат эллипс может задаваться не каноническим уравнением (11.1), а уравнением второй степени другого вида.

Свойства эллипса:

1) Эллипс имеет две взаимно перпендикулярные оси симметрии (главные оси эллипса) и центр симметрии (центр эллипса). Если эллипс задан каноническим уравнением, то его главными осями являются оси координат, а центром – начало координат. Поскольку длины отрезков, образованных пересечением эллипса с главными осями, равны 2а и 2b (2a >2b ), то главная ось, проходящая через фокусы, называется большой осью эллипса, а вторая главная ось – малой осью.

2) Весь эллипс содержится внутри прямоугольника

3) Эксцентриситет эллипса e < 1.

Действительно,

4) Директрисы эллипса расположены вне эллипса (так как расстояние от центра эллипса до директрисы равно а/е , а е <1, следовательно, а/е>a , а весь эллипс лежит в прямоугольнике )

5) Отношение расстояния r i от точки эллипса до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету эллипса.

Доказательство.

Расстояния от точки М(х, у) до фокусов эллипса можно представить так:

Составим уравнения директрис:

(D 1), (D 2). Тогда Отсюда r i / d i = e , что и требовалось доказать.

Гипербола.

Определение 11.5. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 иF 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Доказательство можно провести так же, как и для эллипса.

Парабола.

Определение 11.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой .

У Для вывода уравнения параболы выберем декартову

систему координат так, чтобы ее началом была середина

D M(x,y) перпендикуляра FD , опущенного из фокуса на директри-

r су, а координатные оси располагались параллельно и

перпендикулярно директрисе. Пусть длина отрезка FD

D O F x равна р . Тогда из равенства r = d следует, что

поскольку

Алгебраическими преобразованиями это уравнение можно привести к виду: y ² = 2px , (11.4)

называемому каноническим уравнением параболы . Величина р называется параметром параболы.

Свойства параболы:

1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.

2) Вся парабола расположена в правой полуплоскости плоскости Оху.

Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:

Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e <1), гиперболу (при e >1) или параболу (при е =1).


Похожая информация.


При рассмотрении евклидового пространства мы вводили определение квадратичной формы. С помощью некоторой матрицы

строится многочлен второго порядка вида

который называется квадратичной формой, порождаемой квадратной матрицей А.

Квадратичные формы тесно связаны с поверхностями второго порядка в n - мерном евклидовом пространстве. Общее уравнение таких поверхностей в нашем трехмерном евклидовом пространстве в декартовой системе координат имеет вид:

Верхняя строка - это не что иное, как квадратичная форма, если положить x 1 =x, x 2 =y, x 3 =z:

- симметричная матрица (a ij = a ji)

положим для общности, что многочлен

есть линейная форма. Тогда общее уравнение поверхности есть сумма квадратичной формы, линейной формы и некоторой постоянной.

Основной задачей теории квадратичных форм является приведение квадратичной формы к максимально простому виду с помощью невырожденного линейного преобразования переменных или, другими словами, замены базиса.

Вспомним, что при изучении поверхностей второго порядка мы приходили к выводу о том, что путем поворота осей координат можно избавиться от слагаемых, содержащих произведение xy, xz, yz или x i x j (ij). Далее, путем параллельного переноса осей координат можно избавиться от линейных слагаемых и в конечном итоге свести общее уравнение поверхности к виду:

В случае квадратичной формы приведение ее к виду

называется приведением квадратичной формы к каноническому виду.

Поворот осей координат есть не что иное, как замена одного базиса другим, или, другими словами, линейное преобразование.

Запишем квадратичную форму в матричном виде. Для этого представим ее следующим образом:

L(x,y,z) = x(a 11 x+a 12 y+a 13 z)+

Y(a 12 x+a 22 y+a 23 z)+

Z(a 13 x+a 23 y+a 33 z)

Введем матрицу - столбец

Тогда
- гдеX T =(x,y,z)

Матричная форма записи квадратичной формы. Эта формула, очевидно, справедлива и в общем случае:

Канонический вид квадратичной формы означает, очевидно, что матрица А имеет диагональный вид:

Рассмотрим некоторое линейное преобразование X = SY, где S - квадратная матрица порядка n, а матрицы - столбцы Х и У есть:

Матрица S называется матрицей линейного преобразования. Отметим попутно, что всякой матрице n-ного порядка при заданном базисе соответствует некоторый линейный оператор.

Линейное преобразование X = SY заменяет переменные x 1 , x 2 , x 3 новыми переменными y 1 , y 2 , y 3 . Тогда:

где B = S T A S

Задача приведения к каноническому виду сводится к отысканию такой матрицы перехода S, чтобы матрица В приобрела диагональный вид:

Итак, квадратичная форма с матрицей А после линейного преобразования переменных переходит в квадратичную форму от новых переменных с матрицей В .

Обратимся к линейным операторам. Каждой матрице А при заданном базисе соответствует некоторый линейный оператор А . Этот оператор имеет, очевидно, некоторую систему собственных чисел и собственных векторов. Причем, отметим, что в евклидовом пространстве система собственных векторов будет ортогональна. Мы доказывали на предыдущей лекции, что в базисе собственных векторов матрица линейного оператора имеет диагональный вид. Формула (*), как мы помним, это формула преобразования матрицы линейного оператора при смене базиса. Положим, что собственные вектора линейного оператора А с матрицей А - это вектора у 1 , y 2 , ..., y n .

А это означает, что если собственные вектора у 1 , y 2 , ..., y n взять за базис, то матрица линейного оператора в этом базисе будет диагональной

или В = S -1 А S, где S – матрица перехода от первоначального базиса {e } к базису {y }. Причем в ортонормированном базисе матрица S будет ортогональной.

Т. о. для приведения квадратичной формы к каноническому виду необходимо найти собственные числа и собственные векторы линейного оператора А, имеющего в первоначальном базисе матрицу А, которая порождает квадратичную форму, перейти к базису собственных векторов и в новой системе координат построить квадратичную форму.

Обратимся к конкретным примерам. Рассмотрим линии второго порядка.

или

С помощью поворота осей координат и последующего параллельного переноса осей это уравнение можно привести к виду (переменные и коэффициенты переобозначены х 1 = х, х 2 = у):

1)
если линия центральная, 1  0,  2  0

2)
если линия нецентральная, т. е. один из i = 0.

Напомним виды линий второго порядка. Центральные линии:


Нецентральные линии:

5) х 2 = а 2 две параллельные линии;

6) х 2 = 0 две сливающиеся прямые;

7) у 2 = 2рх парабола.

Для нас представляют интерес случаи 1), 2), 7).

Рассмотрим конкретный пример.

Привести к каноническому виду уравнение линии и построить ее:

5х 2 + 4ху + 8у 2 - 32х - 56у + 80 = 0.

Матрица квадратичной формы есть
. Характеристическое уравнение:

Его корни:



Найдем собственные векторы:

При  1 = 4:
u 1 = -2u 2 ; u 1 = 2c, u 2 = -c или g 1 = c 1 (2i j).

При  2 = 9:
2u 1 = u 2 ; u 1 = c, u 2 = 2c или g 2 = c 2 (i +2j).

Нормируем эти векторы:

Составим матрицу линейного преобразования или матрицу перехода к базису g 1 , g 2:

- ортогональная матрица!

Формулы преобразования координат имеют вид:

или

Подставим в наше уравнение линии и получим:

Сделаем параллельный перенос осей координат. Для этого выделим полные квадраты по х 1 и у 1:

Обозначим
. Тогда уравнение приобретет вид: 4х 2 2 + 9у 2 2 = 36 или

Это эллипс с полуосями 3 и 2. Определим угол поворота осей координат и их сдвиг для того, чтобы построить эллипс в старой системе.

Построим:

Проверка: при х = 0: 8у 2 - 56у + 80 = 0 у 2 – 7у + 10 = 0. Отсюда у 1,2 = 5; 2

При у =0: 5х 2 – 32х + 80 = 0 Здесь нет корней, т. е. нет точек пересечения с осью х !

Вверх