Дайте определение ковалентной связи и ее свойства. Основные характеристики ковалентной связи. Направленность ковалентной связи

Помимо характеристик, общих для любой химической связи (энергия, длина), ковалентная связь имеет дополнительные особенности: кратность, насыщаемость, направленность, сопряжение, полярность и поляризуемость.

Кратность

Между соединяемыми атомами могут образоваться одна, две или три ковалентные связи.

Кратность (или порядок) ковалентной связи характеризуется числом общих электронных пар между соединяемыми атомами.

Пару электронов между атомами изображают соединительной чертой – валентным штрихом .

При наличии одной электронной пары между соединяемыми атомами говорят о простой (ординарной, или одинарной) ковалентной свя­зи.

Например, в молекулах Н 2 , F 2 , HF, Н 2 О, NH 3 , СН 4 , CH 3 СН 3 или сложных ионах ОН - , + , 2- , 2+ все связи между атомами ординарные и являются σ-связями.

При наличии у соединяемых атомов двух или трёх общих электронных пар между ними имеется соответственно двойная или тройная ковалентная связь, при этом одна связь – обязательно σ-связь, остальные – π-связи.

Примерами могут служить молекулы или многоатомные ионы, где между атомами есть кратные (двойные или тройные) связи: N≡N (азот), Н 2 С=СН 2 (этилен), H 2 C=O (формальдегид), НС≡СН (ацетилен), О=N-O - , C≡N - (цианид - ион).

С увеличением кратности ковалентной связи уменьшается её длина и повышается прочность:

Однако увеличение энергии ковалентной связи, как видно из приведённых значений, не пропорционально увеличению её кратности, что указывает на различие в энергиях σ- и π-связи, причём Е σ > Е π . Это обусловлено тем, что эффективность перекрывания атомных орбиталей при образовании σ-молекулярной орбитали выше, чем при образовании π-молекулярной орбитали.

Насыщаемость

Каждый атом способен образовывать определённое число ковалентных связей, благодаря этому молекулы имеют определённый состав: Н 2 , H 2 O, PCl 5 , СН 4 .

Число возможных ковалентных связей, образуемых данным атомом, зависит при обменном механизме от числа неспаренных электронов на внешнем энергетическом уровне атома в основном и в возбуждённом состояниях, а при донорно-акцепторном - ещё и от числа свободных орбиталей на внешних уровнях.

При определении числа ковалентных связей, которые атом данного элемента может образовывать по обменному механизму, следует учитывать, что при переходе атома в возбуждённое состояние число его неспаренных электронов может увеличиваться в результате распаривания некоторых электронных пар и перехода электронов на более высокие энергетические подуровни. Если энергия, затраченная на возбуждение атома, невелика, то она может компенсироваться энергией образующейся химической связи, и возбуждённое состояние атома стабилизируется.

Небольшими затратами энергии сопровождаются переходы электронов на более высокие энергетические подуровни внутри уровня. Переходы электронов с энергетических подуровней одного уровня на подуровни другого уровня требуютбольших затрат энергии, поэтому возбуждённые состояния у атомов элементов первых трёх периодов Периодической системы химических элементов Д. И. Менделеева, возникающие в результате таких переходов, не могут стабилизироваться химическими связями.

Определим валентности 1 атомов элементов первого и второго периодов периодической системы химических элементов в основном и возбуждённом состояниях.

Атом водорода имеет один электрон, поэтому его валентность всегда равна I.

В атоме гелия два электрона занимают ls - орбиталь. Распаривание и переход одного из этих электронов на более высокий энергетический уровень требует больших затрат энергии, поэтому атом гелия является химически инертным.

Валентности атомов лития Li, азота N, кислорода O, фтора F и неона Neравны числу неспаренных электронов в основном состоянии, так как распаривание электронных пар атомов этих элементов возможно только при переходе электрона на более высокий энергетический уровень:

Из приведённых схем электронных формул видно, что валентность атома лития равна I, азота – III, кислорода – II, фтора – I, неона – 0. В атомах бериллия Be, бора B и углерода C может происходить распаривание электронных пар и переход электронов с 2s - подуровня на вакантные орбитали 2р- подуровня.

Переход на более высокий энергетический подуровень внутри уровня не требует большой затраты энергии, и она может быть скомпенсирована за счёт образования химической связи. И поэтому такие переходы осуществляются в условиях обычных химических реакций. Поэтому валентности II, III и IV, присущие соответственно атомам Be, В и С в возбуждённом состоянии, более характерны, чем валентности I и II соответственно атомов В и С, определяемые числом неспаренных р- электронов в их основном состоянии:

Начиная с третьего периода, у атомов р- элементов при возбуждении электроны внешних s - и р- подуровней могут переходить на вакантный d- подуровень, что обуславливает увеличение числа возможных химических связей. Именно этим объясняется способность атомов фосфора Р образовывать пять химических связей (PCl 5), атомов серы S – четыре (SO 2) или шесть (SO 3), а атомов хлора Cl – три, пять и даже семь (происходит, так называемое расширение октета):

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

Определение

Ковалентной связью называется химическая связь, образующаяся за счёт обобществления атомами своих валентных электронов. Обязательным условием образования ковалентной связи является перекрывание атомных орбиталей (АО), на которых расположены валентные электроны. В простейшем случае перекрывание двух АО приводит к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО:

Образование связи

Ковалентная связь (атомная связь, гомеополярная связь) - связь между двумя атомами за счёт обобществления (electron sharing) двух электронов - по одному от каждого атома:

A. + В. -> А: В

По этой причине гомеополярная связь имеет направленный характер. Пара электронов, осуществляющая связь, принадлежит одновременно обоим связываемым атомам, например:

.. .. ..
: Cl : Cl : H : O : H
.. .. ..

Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом ее образования:

1. Простая ковалентная связь . Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными. Если атомы, образующие простую ковалентную связь одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующиеся связь в равной степени владеют обобществленной электронной парой, такая связь называется неполярной ковалентной связью. Если атомы различны, тогда степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов, атом с большей электроотрицательностью в большей степени обладает парой электронов связи, и поэтому его истинный заряд имеет отрицательный знак, атом с меньшей электроотрицательностью приобретает соответственно такой же по величине заряд, но с положительным знаком.

Сигма (σ)-, пи (π )-связи - приближенное описание видов ковалентных связей в молекулах органических соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен , ацетилен и бензол .

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π -связью.

В линейной молекуле ацетилена

Н-С≡С-Н (Н: С::: С: Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π -связи между этими же атомами углерода. Две π -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π -связи, а единая π -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи:

  • Ковалентная неполярная связь образуется между атомами неметалла одного и того же химического элемента. Такую связь имеют простые вещества , например О 2 ; N 2 ; C 12 .
  • Ковалентная полярная связь образуется между атомами различных неметаллов.

См. также

Литература

Органическая химия
Список органических соединений

Wikimedia Foundation . 2010 .

  • Большая политехническая энциклопедия
  • ХИМИЧЕСКАЯ СВЯЗЬ, механизм, за счет которого атомы соединяются и образуют молекулы. Имеется несколько типов такой связи, основанных либо на притяжении противоположных зарядов, либо на образовании устойчивых конфигураций путем обмена электронами.… … Научно-технический энциклопедический словарь

    Химическая связь - ХИМИЧЕСКАЯ СВЯЗЬ, взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Действующие при образовании химической связи силы имеют в основном электрическую природу. Образование химической связи сопровождается перестройкой… … Иллюстрированный энциклопедический словарь

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей … Большая советская энциклопедия

    химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образованных данным атомом с соседними. Термин «химическое строение» ввел академик А. М. Бутлеров в… … Энциклопедический словарь по металлургии

    Ионная связь прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Примером может служить соединение CsF … Википедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия

1. Пространственная направленность . Если электронные облака перекрываются в направлении прямой, которая соединяет ядра атомов, такая связь называется s-связью (s–s-перекрывание Н 2 , р–рCl 2 , s–рHC1).

При перекрывании p-орбиталей, направленных перпендикулярно оси связи, образуются две области перекрывания по обе стороны оси связи. Такая ковалентная связь называется p-связью. Например, в молекуле азота атомы связаны одной s-связью и двумя p-связями.

Направленность связи определяет пространственную структуру молекул, т. е. их форму и характеризуется наличием строго определенного угла между связями. Например, угол между s-связями в молекуле воды равен 104,5°.

2. Полярность связи определяется асимметрией в распределении общего электронного облака вдоль оси связи.

Если общие электронные пары располагаются симметрично относительно обоих ядер, то такая ковалентная связь называется неполярной.

Если общие электронные пары смещаются к одному из атомов (располагаются несимметрично относительно ядер различных атомов), то такая ковалентная связь называется полярной.

В случае, когда электронная пара смещается в сторону более электроотрицательного атома центры (+) и (–) зарядов не совпадают, и возникает система (электрический диполь) из двух равных по величине, но противоположных по знаку зарядов, расстояние между которыми (l ) называют длиной диполя. Мерой полярности молекул является электрический момент диполя m, равный произведению абсолютного значения заряда электрона
(q = 1,6 × 10 –19 Кл) на длину диполя l :

m = q×l .

Единицей измерения m является дебай D, 1 D = 3,33×10 –30 Кл×м.

Задание. Длина диполя молекулы HCl равна 2,2×10 –9 см. Вычислить электрический момент диполя.

2,2×10 –9 см = 2,2×10 –11 м

m = 1,6 × 10 –19 ×2,2×10 –11 = 3,52×10 –30 Кл×м = 3,52×10 –30 /3,33×10 –30 = 1,06 D.

3. Кратность ковалентной связи определяется числом общих электронных пар, которые связывают атомы. Связь между двумя атомами при помощи одной пары электронов называется простой (связи Н – С1, С – Н, Н – О и т. д.). Связь при помощи двух электронных пар называется двойной (этилен Н 2 С = СН 2), при помощи трех электронных пар – тройной (азот N N, ацетилен Н – С С – Н).

4. Длина связи – это равновесное расстояние между ядрами атомов. Длину связи выражают в нанометрах (нм). 1 нм = 10 –9 м. Чем меньше длина связи, тем прочнее химическая связь.

5. Энергия связи равна работе, которую необходимо затратить на разрыв связи. Выражают энергию связи в килоджоулях на моль (кДж/моль). Энергия связи увеличивается с уменьшением длины связи и с увеличением кратности связи. Процесс образования связи протекает с выделением энергии (экзотермический процесс), а процесс разрыва связи – с поглощением энергии (эндотермический процесс).


Гибридизация

Гибридизация – выравнивание орбиталей по форме и энергии.

Sp-гибридизация

Рассмотрим на примере гидрида бериллия ВеН 2 . Электронное строение атома Ве в нормальном состоянии 1s 2 2s 2 . Атом бериллия может вступать во взаимодействие с атомами водородом только в возбужденном состоянии (s ® р-переход).

Ве – 1s 2 2s 1 2p 1

Две образующиеся связи должны быть различны по энергии, так как возникновение одной связано с перекрыванием двух s-орбиталей, вто-
рой – s- и p-орбиталей. Тогда и атомы водорода в молекуле должны быть химически неравноценны: один более подвижен и реакционноспособен, чем другой. Экспериментально это не так – оба атома водорода энергетически равноценны. Для объяснения этого явления Дж.К. Слейтер и Л. Полинг предположили, что «при интерпретации и расчете углов между связями и длины связи целесообразно близкие по энергии связи заменить равным количеством энергетически равноценных связей». Возникающие подобным образом связи являются гибридными.

Таким образом, одна s- и одна р-орбиталь атома бериллия заменяются двумя энергетически равноценными sp-орбиталями, располагающимися под углом 180 о друг к друг, т.е. молекула имеет линейное строение.

sp 2 -гибридизация

Рассмотрим на примере молекулы гидрида бора ВН 3 . Электронное строение атома бора в нормальном состоянии следующее В – 1s 2 2s 2 2p 1 . Он может образовать только одну ковалентную связь. Три же ковалентные связи для атома бора характерны только в возбужденном состоянии В* – 1s 2 2s 1 2p 2

Одна связь, образованная при перекрывании двух s-орбиталей атомов В и Н, энергетически не отличается от двух других, образуемых перекрыванием s- и р-орбиталей. Три sp 2 -гибридные орбитали расположенные под углом 120 о друг к другу, молекула имеет плоское строение. Подобная картина характерна для любых четырехатомных молекул, образованных за счет трех sp 2 -гибридных связей, например, для хлорида бора (BCl 3).

sp 3 -гибридизация

Рассмотрим на примере метана СН 4 . В нормальном состоянии атом углерода с электронным строением 1s 2 2s 2 2p 2 может дать только две ковалентные связи. В возбужденном состоянии он способен быть четырехвалентным с электронным строением 1s 2 2s 1 2р 3 .

Гибридными становятся одна s- и три р-орбитали атома углерода, при этом образуются четыре sp 3 -гибридные, энергетически равноценные орбитали. Молекула метана приобретает тетраэдрическое строение. В центре тетраэдра, все вершины которого геометрически равноценны, находится атом углерода, а в его вершинах атомы водорода. Угол между связями составляет 109 о 28¢.

Силы взаимодействия между молекулами называют ван-дер-ваальсовыми или межмолекулярными. Это взаимодействие обусловлено электростатическим притяжением между отдельными молекулами и характеризуется следующими особенностями:

Действует на сравнительно больших расстояниях, существенно превосходящих размеры самих молекул;

Характеризуется малой энергией, поэтому существенно ослабевает с повышением температуры;

Является ненасыщающимся, т. е. взаимодействие данной молекулы со второй не исключает подобного эффекта по отношению к третьей, четвертой и т. д.

С ростом относительных молярных масс силы межмолекулярного взаимодействия возрастают и, как следствие, повышаются температуры плавления и кипения веществ.

Задание . Вычислить разность электроотрицательностей атомов ΔЭО для связей O–H и О–Мg в соединении Мg(ОН) 2 и определить какая из этих связей более полярна. ЭО(Н) = 2,1 эВ, ЭО(О) = 3,5 эВ, ЭО(Mg) = 1,2 эВ.

Решение:

ΔЭО(O–H) = 3,5 – 2,1 = 1,4; ΔЭО(O–Mg) = 3,5 – 1,2 = 2,3.

Таким образом, связь Mg–О более полярна.

При образовании соединений из элементов, очень отличающихся по электроотрицательности (типичных металлов и типичных неметаллов), общие электронные пары полностью смещаются к более электроотрицательному атому. Например, при горении натрия в хлоре неспаренный 3s-электрон атома натрия спаривается с 3p-электроном атома хлора. Общая электронная пара полностью смещается к атому хлора (Δχ(Cl) = 2,83 эВ, Δχ(Cl) = 0,93 эВ). Чтобы ионная связь возникла необходимо:

1. Наличие атома с четко выраженной тенденцией к отдаче электрона с образованием положительно заряженного иона (катиона), т.е. с малой ЭИ. Потенциал ионизации – энергия, которую необходимо затратить для удаления 1-го электрона с внешней орбитали. Чем меньше потенциал ионизации, тем легче атом теряет электроны, тем сильнее выражены у элемента металлические свойства. Потенциал ионизации растет в пределах периода слева направо, уменьшается сверху вниз.

Процесс отдачи электронов называется окислением.

2. Наличие атома с четко выраженной тенденцией к присоединению электрона с образованием отрицательно заряженных ионов (анионов), т.е. с большим СЭ. Процесс присоединения электронов называется восстановлением.

Cl + e ® Cl –

Типичные ионные соединения образуются при соединении атомов металлов главных подгрупп I и II групп с атомами неметаллов главной подгруппы VII группы (NaCl, KF, СаС1 2).

Между ионной и ковалентной связью нет резкой границы. В газовой фазе вещества характеризуются чисто ковалентной полярной связью, но эти же вещества в твердом состоянии характеризуются ионной связью.

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВ

Образование из атомов молекул, сложных ионов, кристаллических, аморфных и других веществ сопровождается уменьшением энергии по сравнению с невзаимодействующими (свободными) атомами. При этом минимальной энергии соответствует определённое расположение атомов друг относительно друга, которому отвечает существенное перераспределение электронной плотности (происходит изменение электронных структур взаимодействующих атомов). Силы, удерживающие атомы в молекулах и веществах, получили обобщённое название «химической связи».

Согласно предельно упрощенным теориям строения молекул, основанным на электронной теории валентности, предложенных в 1916 году, химическая связь возникает за счёт перераспределения электронов валентных орбиталей, в результате чего создаётся электронная конфигурация благородного газа ( – октет) или электронная структура за счёт образования общих электронных пар (Г. Льюис) или за счёт образования ионов (В. Коссель). Важнейшие виды химической связи: ковалентная, ионная, металлическая, водородная и межмолекулярная.

Ковалентная связь

Ковалентная связь – наиболее общий вид химической связи, возникающей за счёт обобществления электронной пары, когда каждый из взаимодействующих атомов поставляет по одному электрону.

Механизм образования ковалентной связи рассмотрим на примере молекулы .

При сближении двух атомов водорода до определённого расстояния происходит перекрытие электронных облаков атомов и образуется молекула . Поэтому каждый атом водорода в молекуле имеет завершенную структуру . В результате между ядрами атомов возникает область максимальной электронной плотности (рисунок 4.1).


Рисунок 4.1 – Перекрывание электронных облаков в молекуле водорода

Ковалентную связь можно представить:

а) графически

б) в виде электронных пар

Хорошей иллюстрацией механизма образования ковалентной связи является рисунок 4.2.

Рисунок 4.2 - График изменения потенциальной энергии в зависимости от расстояния между ядрами атомов водорода

Устойчивым состоянием молекулы является такое, когда силы притяжения и отталкивания уравновешивают друг друга. Оно отвечает минимуму потенциальной энергии и характеризуется величиной равновесного расстояния между ядрами атомов (), а также величиной энергии связи (), отвечающей минимуму на потенциальной кривой.

Таким образом сущность ковалентной связи состоит в следующем:

Она образуется электронами с противоположно направленными спинами;

Связь тем прочнее, чем больше перекрытие электронных облаков взаимодействующих атомов.

Существуют две разновидности ковалентной связи.

Неполярная ковалентная связь, в которой общая электронная пара расположена в пространстве симметрично относительно ядер обоих атомов. Она образуется преимущественно между атомами одного и того же элемента или между атомами, имеющими близкие значения электроотрицательностей и т.д.) (рисунок 4.3а). Эти вещества обладают низкими температурами плавления и кипения, и в воде практически не диссоциируют.

Полярная ковалентная связь, в которой общая электронная пара смещена в сторону более электроотрицательного элемента. Она образуется между атомами с различной электроотрицательностью. Например, молекула хлороводорода :

Чем больше разность величин ЭО связанных атомов, тем больше полярность связи.

Например:

Полярность связи обусловлена тем, что в результате смещения электронной плотности к атому более электроотрицательного элемента, образуется постоянный диполь: в молекуле на атоме хлора появляется избыточный отрицательный заряд, а на атоме водорода равный по величине положительный заряд:

Схематически диполь изображается так (рисунок 4.3б):

Рисунок 4.3 а – неполярная ковалентная связь, б – полярная ковалентная связь, длина диполя, т.е. расстояние между ядрами атомов в молекуле.

Для количественной характеристики полярности связи (молекулы) вводится величина – дипольный момент , которая (является векторной величиной):

Заряд электрона, равный .

Дипольный момент измеряется в кулон-метрах или в дебаях .

Вверх